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We investigate how the response of coupled dynamical systems is modified due to a structural alteration
of the interaction. The majority of the literature focuses on additive perturbations and symmetrical interaction
networks. Here, we consider the challenging problem of multiplicative structural alterations and asymmetrical
interaction coupling. We introduce a framework to approximate the averaged response at each network node
for general structural alterations, including non-normal and asymmetrical ones. Our findings indicate that both
the asymmetry and non-normality of the structural alterations impact the global and local responses at different
orders in time. We propose a set of matrices to identify the nodes whose response is affected the most by the
structural alteration.
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Introduction. Interaction among dynamical systems leads
to various collective emergent behaviors ranging from spon-
taneous magnetization in materials to opinion polarization
on social networks [1–4]. The structure of the interaction
coupling, including its strength, essentially determines the
response of such macroscopic states to external perturbations.
The quantification of the response of coupled dynamical sys-
tems is an important open problem that keeps drawing the
attention of physicists and mathematicians [5–9]. Typically
these systems are modeled using networks where the nodes
and edges represent, respectively, the dynamical units and
interaction coupling [10,11]. One then evaluates the network
properties and correlates them with particular features of the
response [12–14].

A challenging question is to evaluate how the response
is impacted when the dynamics itself is modified, i.e., the
network structure through the edges is modified. Such struc-
tural alterations are multiplicative by nature which, compared
to additive perturbations, is mathematically much harder to
tackle. Another level of complexity is added when the result-
ing coupling is not symmetric. Indeed, when the interaction
becomes asymmetrical and non-normal, many mathematical
relations can no longer be applied, leading to fewer analytical
predictions. However, many real-world networked systems
display asymmetry and non-normality [15]. Beyond net-
worked systems theory, both multiplicative perturbations and
non-normal interaction coupling have been overlooked due to
their complexity. Any effort in answering this question might
have direct application in predicting the behavior of systems
in fields as diverse as active flow and information networks,
electric power grids including ohmic losses, synchronization
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of weakly coupled neuron dynamics and frustrated oscillator
systems, network inference, and non-Hermitian quantum me-
chanics [16–23].

Previous efforts in this direction have focused on how the
stability of network synchronization is impacted by small
parameter mismatches in the coupling and the nodal unit
dynamics [24–26]. From another perspective, earlier works
investigated the conditions under which a linear switched
system is stable [27–29].

In this Letter, we focus on coupled dynamical systems
whose dynamics can be approximated by their linear dynam-
ics around a stable fixed point [30]. The structural alteration
of the interaction is modeled as follows. Starting with the
symmetrical coupling interaction, we introduce a multiplica-
tive structural alterations that effectively makes the interaction
asymmetrical in general. Borrowing tools from quantum
mechanics to approximate the product of two matrix expo-
nentials, we provide an analytical estimation of the amplitude
of the response of each dynamical unit. We show that the
short-time response is given by functions of three matrices
involving the dynamical matrix and the structural alteration
matrix. Their diagonal elements can be used to identify the
nodes that are the most affected by the structural alterations.
Interestingly, we show that the global averaged response is
affected by the asymmetrical part of the structural alteration
later than the local response at each node. Eventually, we
show that one can use our framework to assess the response of
unaltered asymmetrical networks and to control the response.

Theoretical framework. We focus on the linear coupled
dynamical system,

ẋ = (A + �)x + η (1)

where x ∈ RN are the degrees of freedom at the N nodes
and A,� ∈ RN×N are, respectively, the dynamical matrix and
the structural alteration. They define the interaction coupling
between the network nodes. The matrix A is symmetric, which
corresponds to the initial symmetrical coupling, i.e., A = A�,
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while � is an asymmetrical matrix that models the structural
alteration of the interaction, i.e., � �= ��. We additionally
require that all the eigenvalues of A are nonpositive. Note that
self-loops could also be included. The last term η models any
external additive perturbation. The initial condition is taken
to be x(t = 0) = 0. It is important to remark that Eq. (1)
can be viewed as the linearization of a nonlinear dynamical
system around a stable fixed, in which case (A + �) would
correspond to the Jacobian of the system [31].

We are interested in assessing how the response of the
system is modified by the structural alteration �. The response
to a specific choice of η is not what we are aiming for,
but rather the response averaged over an ensemble of per-
turbations spanning all the potential input nodes [32]. Let us
take as an ensemble of perturbations η(i, t ) = êi δ(t ) with i =
1, . . . , N , where êi is the ith canonical vector. This choice of
ensemble will have useful properties in later derivations. Such
ensembles are also used in control theory to evaluate perfor-
mance metrics [33–36]. With the vanishing initial condition,
one obtains the response to the perturbation η(i, t ), x(i, t ) =
[e(A+�)t ].,i, where [C].,i denotes the ith column of the matrix
C. To quantify the amplitude of the response following the
perturbation, we focus on the square of the trajectories at each
node. As stated earlier, we are not interested in a specific
perturbation but rather the expected response to any pertur-
bation. We therefore take the average over the ensemble of
perturbations η(i, t ), i = 1, . . . , N . We denote the averaged
squared response at node j as x2

j (t ) = ∑N
i=1 [x(i, t )x(i, t )�] j j .

Doing so, one has

x2
j (t ) = [e(A+�)t e(A�+�� )t ] j j . (2)

The above equation gives the time evolution of the averaged
amplitude of the response at node j. Of course, assuming that
the matrix (A + �) is nondefective, one can diagonalize it and
obtain an expression in terms of its left and right eigenvectors
and corresponding eigenvalues. If instead the matrix is defec-
tive, one cannot perform the eigendecomposition. Either way,
one then relies on a numerical investigation to assess the effect
of � on the response. Here, instead, we want to deepen our
analytical understanding about how the asymmetry modifies
the response of the system. So let us forget about performing
any eigendecomposition this time. The reason behind it will
become clear below. As a side note, if one is not interested
in the response but rather in the long-time stability of the
system, one can simply check the sign of the real part of the
eigenvalues of (A + �). In the most general case, one has
the commutator [A + �, A� + ��] �= 0, namely (A + �) is
a non-normal matrix. This has important consequences as one
cannot simply add up the exponents in Eq. (2) to obtain a
single matrix exponential. Instead, using the Baker-Campbell-
Hausdorff formula, Eq. (2) can be written as

x2
j (t ) = [eM1 t+M2

t2

2 +M3
t3

12 +h.o.t.] j j, (3)

where we defined the matrices

M1 = 2A + � + ��, (4a)

M2 = [A,�� − �] + [�,��], (4b)

M3 = [� − ��, [A,�� − �] + [�,��]]. (4c)

We also used [A + �, A� + ��] = [A,�� − �] +
[�,��], and omitted the higher-order terms (h.o.t.) beyond
t3 in the exponent of Eq. (3). One remarks that both matrices
M1 and M2 are symmetric while M3 is skew symmetric.
As a sanity check, one indeed recovers simply the sum
of the exponents in Eq. (2) when (A + �) is normal, as
only M1 remains nonvanishing. From Eq. (3), one notices
that as time grows, different products involving matrices
A, �, and �� contribute to the averaged response. Indeed,
at short times right after the perturbation, the dominating
term is given by the symmetric matrix (2A + � + ��).
Interestingly, a consequence of this is that the leading order
in t of the short-time averaged response is independent of the
asymmetry introduced by �. Therefore, different choices of
� with the same symmetric matrix (� + ��) yield the same
short-time response. Moreover, if � is skew symmetric, then
there is no linear correction in t induced by the structural
alteration. Both the asymmetry of � through the commutator
[A,�� − �], and its non-normality with [�,��] come into
play at the next leading order in t in the exponent of Eq. (3).
One thus expects to observe the effect of the asymmetry
of � later in the response. Equation (3) already provides
important information about when the properties of � impact
the response. Also, provided that � is not too large, one may
approximate Eq. (3) as

x2
j (t ) ∼= [eM1 t+M2

t2

2 +M3
t3

12 ] j j, (5)

where we dropped the h.o.t. in the exponent [32]. Below we
check the validity of the approximation. Before that, let us
gain more insights by focusing first on the global response
of the network and then move on to the local response of
each node.

Investigating the global response at the network level might
inform us on how to pick a specific matrix � that would
simultaneously modify the response at the nodes the most. As
a measure of the global response of the network, one can take
the sum of Eq. (5) over all the nodes, which can be written
with the trace,

N∑
j=1

x2
j (t ) ∼= Tr[eM1 t+M2

t2

2 +M3
t3

12 ]. (6)

Many interesting observations have to be made about Eq. (6),
but let us start by checking whether it is a fair approximation
of the response. In Fig. 1, we numerically simulate Eq. (1)
with A = −L(G) where L(G) is the Laplacian matrix of a
Watts-Strogatz network [37] [Fig. 1(a)] with N = 10 nodes.
The structural alteration � is randomly drawn (see caption)
and its effect is given in Fig. 1(b), which depicts the matrix
elements of (A + �). For this network and structural alter-
ation, one observes in Fig. 1(c) a good agreement between
Eq. (6) (dashed orange line) and the simulation (blue solid
line). One should also remark that � significantly modifies
the response of the network compared to the case without any
structural perturbation (dotted-dashed line). In Figs. 1(d)–1(f)
we further check the theory against numerical simulations for
larger networks of N = 500 nodes obtained using different
network generating algorithms. Note that the response of the
network does not always diverge or is slower to return to zero.
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(e) (f)

FIG. 1. Comparison between theory Eq. (6) and numerical time
evolution of Eq. (1). (a) Matrix elements of A used for (b) and (c). It
is the negative of the Laplacian matrix of a Watts-Strogatz network
[37] with N = 10 nodes, m = 2 initial nearest neighbors, and edge
rewiring probability p = 0.2, to which self-loops of weight 0.01 were
added. (b) Matrix elements of (A + �). The structural alteration
matrix � is given by �i j = Ai jξi j with ξi j ∼ N (0, 0.25) and i, j =
1, . . . , N . (c) Sum of the square of the trajectories averaged over the
ensemble of perturbations η(i, t ) = êi δ(t ) with i = 1, . . . , N . The
blue solid line is obtained by numerically solving Eq. (1). The orange
dashed line gives the right-hand side of Eq. (6). The dotted-dashed
line is obtained by numerically solving Eq. (1) without the struc-
tural alterations matrix, i.e., setting � = 0. (d)–(f) Same plots as
(c) but using three different types of networks with N = 500 nodes.
(d) Watts-Strogatz network with m = 4 initial nearest neighbors and
edge rewiring probability p = 0.05. (e) Barabási-Albert network
with m = 4 new neighbors [10]. (f) Erdős-Rényi network with edge
probability p = 0.05 [10]. For all three networks self-loops of weight
0.01 were added.

It can be decaying faster than the unperturbed network as we
illustrate in the Supplemental Material [32].

This being checked, let us move back to Eq. (6). We first
notice the correction to the short-time behavior that is dictated
by the symmetric part of the structural alteration matrix, i.e.,
(� + ��). Thus, the short-time response is mostly indepen-
dent of the asymmetry of �, which only kicks in at higher
order in t in Eq. (6). We verify numerically this fact in the Sup-
plemental Material [32] where we make use of many different
structural alteration matrices � with the same symmetric part
(� + ��) but different asymmetric parts (� − ��). Second,
it seems that at the next order in time, we find two contribu-
tions, namely the commutator between A and (�� − �) and
the commutator between � and �� [see Eq. (4b)]. While the
latter is directly related to the normality of �, the former term

is more complex as it involves some interaction between A
and the structural alteration �. Surprisingly, by scrutinizing
Eq. (6), one actually remarks that both terms only affect the
response at the fourth order in t . Indeed, rewriting the first few
terms of the exponential series of Eq. (6), one has

N∑
j=1

x2
j (t ) ∼= N + Tr[M1]t + Tr

[
M2

1

] t2

2
+ Tr

[
M3

1

] t3

6

+ (
Tr

[
M4

1

] + 2 Tr[M1M3] + 3 Tr
[
M2

2

]) t4

24

+ O(t5), (7)

where we used that the trace of a commutator is always
vanishing regardless of the matrices, i.e., Tr([A,�� − �]) =
Tr([��,�]) = 0. We also used the property of the anticom-
mutator that Tr[{B, C}] = 2 Tr[BC]. The first line of Eq. (7)
only involves A and the symmetric part of the structural
alteration (� + ��). The asymmetrical part as well as the
non-normality of the structural alteration show up in the
second line of Eq. (7), at the fourth order in t [38]. More
specifically, distinct structural alterations � that are skew
symmetric only start to differ from each other, and from the
unperturbed response, at the fourth order in time, with the
trace of the matrix (2 M1M3 + 3 M2

2). Therefore, the asym-
metry and non-normality of the structural alteration � only
affect the averaged global response later in the transient.
Choosing specifically a dynamical matrix A that is the neg-
ative of the Laplacian of a network, one has that Tr[M1] =
−2

∑
j (κ j + δκ j ), where κ j is the degree of node j and δκ j =

[� + ��] j j . In this case, the leading order in t in Eq. (7) is
given by the total degree in the unperturbed network plus the
diagonal elements of the structural alteration.

While the above results are true for the global averaged
response of the network, interestingly it is not the same when
looking at the local averaged response. Before elaborating
on that point, let us numerically check the approximation
of Eq. (5) for the local response. In Fig. 2(a), we show the
response at each node for the same network and structural
alteration as in Fig. 1(c). One observes a good agreement
between the theory Eq. (5) (dashed lines) and the numerical
simulations (solid lines). The difference dj (t ) between the tra-
jectories at each node with the structural alteration and the tra-
jectories without the structural alteration is shown in Fig. 2(b).
One notices that the two nodes with the largest difference are
identified by the diagonal of M1 [see the inset of Fig. 2(a)].

We can now come back to the surprising result. Let us write
down the first terms of the exponential series in Eq. (5),

x2
j (t ) ∼= 1 + [M1] j j t + ([

M2
1

]
j j + [M2] j j

) t2

2

+
([

M3
1

]
j j + 3[M1M2] j j + 1

2
[M3] j j

)
t3

6
+ O(t4).

(8)

Again, a few comments should be made about this expression.
First, unlike the global averaged response in Eq. (7), one
has that the asymmetrical part and the non-normality of �

already affect the response at second order in t . Second, if the
structural alteration is skew symmetric, i.e., �� = −�, the
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FIG. 2. Comparison between theory Eq. (5) and numerical time
evolution of Eq. (1). (a) Square of the averaged response at each
node of the network. The matrix A and the structural alteration �

are the same as in Fig. 1(c). Numerical simulations are given by
the solid lines. The predictions of Eq. (5) are given by the dashed
lines. Inset: Matrix elements of M1 [see Eq. (4a)]. (b) Difference
between the response without and with the structural alteration
[dj (t ) = x2

j (A + �, t ) − x2
j (A, t )]. In both panels, the color of the

trajectories are given by the diagonal of the matrix M1 depicted in
the inset of (a).

nodes whose response is mostly affected can be identified by
the diagonal elements of matrices M2 and (3M1M2 + 1

2 M3).
As discussed in the global averaged case, if A is the negative
of the Laplacian of a network, the leading order in t in Eq. (8)
is given by [M1] j j = −2(κ j + δκ j ). We illustrate numerically
both these observations in Fig. 3. We take the same N = 10
node network as in Fig. 1(a) and choose a skew-symmetric
structural alteration �. In Fig. 3(a) one sees that the theory
(dashed lines) and the numerical simulations (solid lines)
agree well. We check in Fig. 3(b) that the leading order cor-
rection of the global response for a skew-symmetric structural
alteration is the fourth order in t , as predicted by Eq. (7). Then,
using the expression for the local averaged response in Eq. (8),
one can identify the nodes whose response is the most affected
by the structural alteration. For the realization of � used in
Fig. 3, we found that the matrix (3M1M2 + 1

2 M3) has larger
elements than M2. Thus, the nodes that are the most affected
are identified by the diagonal element of the former matrix,
as shown in Fig. 3(d). Comparing Figs. 3(b) and 3(d), one
observes that even though the global response is barely altered
by � at short times, the local response is actually impacted by
the structural perturbation. Finally, one should remark that the
system in Fig. 3 can be viewed as an unaltered asymmetrical
network. Our framework thus allows to analyze the response
of such systems as well.

Perspective for control. The tools developed in this Let-
ter can be used to perform control of the response to

FIG. 3. Comparison between theory Eq. (5) and numerical
time evolution of Eq. (1). (a) Square of the averaged response
at each node of the network. The matrix A is the same as in
Fig. 1(c). The structural alteration � is skew symmetric and

randomly obtained as � = 1
2 (� − �

�
) where �i j = Ai jξi j with

ξi j ∼ N (0, 0.25) and i, j = 1, . . . , N . Numerical simulations are
given by the solid lines. The predictions of Eq. (5) are given
by the dashed lines. (b) Absolute value of the difference be-
tween the global response with and without the structural alteration
[|∑N

j=1 dj (t )| = |∑N
j=1 x2

j (A + �, t ) − x2
j (A, t )|]. The dotted lines

give the scaling ∼t4. (c) Matrix element of (3M1M2 + 1
2 M3). The

trajectories of each node in (a) and (d) are colored according to the
diagonal element of this matrix. (d) Difference between the response
without and with the structural alteration [dj (t ) = x2

j (A + �, t ) −
x2

j (A, t )].

perturbations. Let us consider the case where one wants to
accelerate the overall return of the network to the stable fixed
point. Additionally, we assume that the control actions avail-
able are structural alterations given by the set of matrices
{�i}m

i=1. Given that Eq. (7) only depends on the powers of
M1 up to the third order in t , one can achieve this task by
minimizing the largest eigenvalues of M1 = 2A + �i + ��

i ,
over the set of control actions. Note that the control actions
do not have to be symmetric matrices, but they do modify
M1 in a symmetric way. The latter is a standard control
problem to solve [39]. Interestingly, many different struc-
tural alterations �i might yield the same symmetric matrix
(�i + ��

i ). Thus, several different control actions might lead
to the same effect on the response up to the third order in t .
Instead of accelerating the overall return of the system, one
can also use the presented framework to tune the response of
a specific node. Looking at Eq. (8), if one wants to modify
the short-time response of node j, one should pick the �i

that will make the element at position ( j, j) of the matrix
[M1 + (M2

1 + M2) t
2 + (M3

1 + 3 M1M2 + 1
2 M3) t2

6 ] as small
as possible.

Conclusions and outlook. Predicting the response of cou-
pled dynamical systems has broad implications in fields such
as climatology, material science, social dynamics, and neuro-
science, to name but a few. Specifically, understanding how
the response is altered when the coupling interaction changes
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is of paramount importance to anticipate a potential loss of
stability, or identify vulnerable network components.

In this Letter, we introduced a framework to approximate
the averaged response of networks whose structure has been
modified by a structural alteration that can be non-normal
and asymmetrical. We focused on predicting the square of
the trajectories at each node, and showed that the global
averaged response is mostly independent of the asymmetry
and non-normality of the structural perturbation at short times.
However, for the local averaged response, both the asymmetry
and non-normality have an effect at earlier times. Using the
leading order terms of the matrix exponential series, we intro-
duced a set of matrices Eqs. (4) to identify the nodes whose
response is the most affected by the structural perturbation.
They are obtained using the Baker-Campbell-Hausdorff for-
mula, as combinations of the dynamical matrix and structural
alteration matrix. Note that our framework allows to analyze
the response of structurally unperturbed asymmetrical net-
works as well as to perform control of the response.

The framework proposed in this Letter opens the way
to many interesting questions. We focused on the response

averaged over an ensemble of perturbations. It would be of
interest to obtain an analytical prediction for the response to
a specific perturbation, as some of them might be more likely
to happen than others. Some insights about it are given in the
Supplemental Material where, instead of averaging over an
ensemble, we obtain the global response to a specific perturba-
tion [32]. Also, one should consider inputs other than Dirac-δ
distributions, to better understand the interplay between
timescales within the system. The formalism presented here
might be in particular relevant for the assessment of the ro-
bustness of fast linear switched systems [28], whose response
between consecutive switching could be quantified. Even-
tually, instead of using network generating algorithms, one
should investigate real-world networks and analyze the ma-
trices introduced here to identify the nodes that are the most
altered in specific ways. Eventually, one could consider spe-
cific structural alterations and network structures to further the
connection between the matrices M1, M2, M3 and the network
properties.

Data availability. No data were created or analyzed in this
study.

[1] C. N. Yang, Phys. Rev. 85, 808 (1952).
[2] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet,

Phys. Rev. Lett. 75, 1226 (1995).
[3] L. M. Pecora and T. L. Carroll, Phys. Rev. Lett. 80, 2109 (1998).
[4] F. Baumann, P. Lorenz-Spreen, I. M. Sokolov, and M. Starnini,

Phys. Rev. Lett. 124, 048301 (2020).
[5] P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, Nat. Phys. 9,

89 (2013).
[6] H. Ronellenfitsch, J. Dunkel, and M. Wilczek, Phys. Rev. Lett.

121, 208301 (2018).
[7] M. Tyloo, T. Coletta, and P. Jacquod, Phys. Rev. Lett. 120,

084101 (2018).
[8] X. Zhang, S. Hallerberg, M. Matthiae, D. Witthaut, and M.

Timme, Sci. Adv. 5, eaav1027 (2019).
[9] M. Tyloo, L. Pagnier, and P. Jacquod, Sci. Adv. 5, eaaw8359

(2019).
[10] M. Newman, Networks (Oxford university press, Oxford, U.K.,

2018).
[11] M. Pósfai and A.-L. Barabási, Network Science (Cambridge

University Press, Cambridge, U.K., 2016).
[12] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200

(2001).
[13] F. Baumann, I. M. Sokolov, and M. Tyloo, Phys. Rev. E 102,

052313 (2020).
[14] M. Tyloo, J. Phys. Complex. 3, 03LT01 (2022).
[15] M. Asllani, R. Lambiotte, and T. Carletti, Sci. Adv. 4, eaau9403

(2018).
[16] J. Gao, B. Barzel, and A.-L. Barabási, Nature (London) 530,

307 (2016).
[17] Y. Ashida, Z. Gong, and M. Ueda, Adv. Phys. 69, 249 (2020).
[18] H. Ronellenfitsch, Phys. Rev. Lett. 126, 038101 (2021).
[19] X. Liu, D. Li, M. Ma, B. K. Szymanski, H. E. Stanley, and J.

Gao, Phys. Rep. 971, 1 (2022).
[20] P. Clusella, B. Pietras, and E. Montbrió, Chaos 32, 013105

(2022).

[21] M. Tyloo, J. Phys.: Complex. 4, 045005 (2023).
[22] R. Succar and M. Porfiri, Phys. Rev. Lett. 134, 077401 (2025).
[23] P. Martinez-Azcona, A. Kundu, A. Saxena, A. del Campo, and

A. Chenu, Phys. Rev. Lett. 135, 010402 (2025).
[24] J. Sun, E. M. Bollt, and T. Nishikawa, Europhys. Lett. 85, 60011

(2009).
[25] F. Sorrentino and M. Porfiri, Europhys. Lett. 93, 50002 (2011).
[26] F. Sorrentino and L. Pecora, Chaos 26, 094823 (2016).
[27] O. Mason and R. Shorten, in Proceedings of the 2003 American

Control Conference, 2003 (IEEE, New York, 2003), Vol. 5,
pp. 4469–4470.

[28] M. Porfiri, D. G. Roberson, and D. J. Stilwell, SIAM J. Control
Optim. 47, 2582 (2008).

[29] L. Fainshil, M. Margaliot, and P. Chigansky, IEEE Trans.
Autom. Control 54, 897 (2009).

[30] The system can be linear by nature, or nonlinear, but its re-
sponse is small enough such that the dynamics remains inside
the initial basin of attraction, close to the stable fixed point,
where the linear approximation holds.

[31] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applica-
tions to Physics, Biology, Chemistry, and Engineering (Chapman
and Hall/CRC, New York, 2024).

[32] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/3s3d-qr4l for additional information where we show
how the framework can be applied to specific perturbations;
we further discuss the error made by the approximation of
the response; we provide an instance of structural perturbation
that results in a faster decay of the response compared to the
unaltered network; and we also illustrate numerically that the
short-time response is independent of the asymmetry of �.

[33] K. Zhou and J. Doyle, Essentials of Robust Control (Prentice-
Hall, Upper Saddle River, NJ, 1998).
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