Multidisciplinary : Rapid Review : Open Access Journal
IEEE Access 10, 65118-65125 (2022).

## Toward Model Reduction for Power System Transients With Physics-Informed PDE

LAURENT PAGNIER ${ }^{\text {®1 }}$, (Member, IEEE),
JULIAN FRITZSCH ${ }^{\oplus} 2,3$, (Graduate Student Member, IEEE), PHILIPPE JACQUOD ${ }^{\odot}{ }^{\circ}$, (Member, IEEE), AND MICHAEL CHERTKOV ${ }^{\text {® }}$, (Senior Member, IEEE)

Multidisciplinary : Rapid Review : Open Access Journal
IEEE Access 10, 65118-65125 (2022).

## Toward Model Reduction for Power System Transients With Physics-Informed PDE

LAURENT PAGNIER ${ }^{\text {®1 }}$, (Member, IEEE),
JULIAN FRITZSCH ${ }^{-2,3}$, (Graduate Student Member, IEEE), PHILIPPE JACQUOD ${ }^{\text {© } 2,3}$, (Member, IEEE), AND MICHAEL CHERTKOV ${ }^{\text {® }}$, (Senior Member, IEEE)
Construction of a reduced, continuous model

- Reproduces steady-state

Multidisciplinary : Rapid Review : Open Access Journal
IEEE Access 10, 65118-65125 (2022).

## Toward Model Reduction for Power System Transients With Physics-Informed PDE

LAURENT PAGNIER ${ }^{\text {®1 }}$, (Member, IEEE),
JULIAN FRITZSCH ${ }^{\text {2 }} 3$, (Graduate Student Member, IEEE), PHILIPPE JACQUOD ${ }^{\text {2 }}$, ${ }^{\text {, (Member, IEEE), AND }}$ MICHAEL CHERTKOV ${ }^{\text {® }}$, (Senior Member, IEEE)
Construction of a reduced, continuous model

- Reproduces steady-state


Multidisciplinary : Rapid Review : Open Access Journal
IEEE Access 10, 65118-65125 (2022).

## Toward Model Reduction for Power System Transients With Physics-Informed PDE

LAURENT PAGNIER ${ }^{\text {®1 }}$, (Member, IEEE),
JULIAN FRITZSCH ${ }^{-2,3}$, (Graduate Student Member, IEEE), PHILIPPE JACQUOD ${ }^{\text {2 }}$, ${ }^{\text {, (Member, IEEE), AND }}$ MICHAEL CHERTKOV ${ }^{\text {® }}$, (Senior Member, IEEE)
Construction of a reduced, continuous model

- Reproduces steady-state

- Captures dynamics

Multidisciplinary : Rapid Review : Open Access Journal
IEEE Access 10, 65118-65125 (2022).

## Toward Model Reduction for Power System Transients With Physics-Informed PDE

LAURENT PAGNIER ${ }^{\text {®1 }}$, (Member, IEEE),
JULIAN FRITZSCH ${ }^{-2,3}$, (Graduate Student Member, IEEE), PHILIPPE JACQUOD ${ }^{\text {© }}$, ${ }^{\text {, (Member, IEEE), AND }}$ MICHAEL CHERTKOV ${ }^{\text {® }}$, (Senior Member, IEEE)

## Construction of a reduced, continuous model

- Reproduces steady-state

- Captures dynamics



# Toward Model Reduction for Power System Transients With Physics-Informed PDE 

LAURENT PAGNIER ${ }^{\text {®1 }}$, (Member, IEEE),
JULIAN FRITZSCH ${ }^{-2,3}$, (Graduate Student Member, IEEE), PHILIPPE JACQUOD ${ }^{\text {2 }}$, , (Member, IEEE), AND MICHAEL CHERTKOV ${ }^{(1)}$, (Senior Member, IEEE)

Construction of a reduced, continuous model

- Reproduces steady-state
- Captures dynamics


## In progress

Extraction of real-time dynamical parameters

- Estimate of available ancillary resources


# Reconstructing Networks from Partial Measurements 

## Philippe Jacquod <br> CCS2023 Satellite Symposium

Colls.: R. Delabays (HES-SO) M. Tyloo (LANL)

M Tyloo, R Delabays, and PJ, Chaos 31, 10311 ² (2021)

## The problem

* agents
* their degrees of freedom
$\left\{x_{i}(t), \dot{x}_{i}(t)\right\}$



## The problem

* n agents
* their degrees of freedom
* what can we know of the way they interact?

$$
\left\{x_{i}(t), \dot{x}_{i}(t)\right\}
$$



## The problem

$\left\{x_{i}(t), \dot{x}_{i}(t)\right\}$


What we want to extract :

* Number n of agents ?
* Connectivity ? Graph topology ?

From
-complete / partial
-active / passive
measurements.

## Previous works

# *Probing, i.e. injecting controlled signal and measuring the response 

D. Yu, M. Righero, and L. Kocarev, PRL 2006
D. Yu and U. Parlitz, EPL 2008
M. Tyloo and R. Delabays, J Phys Complex 2021

## *Optimization of likelihood cost function

D.-T. Hoang, J. Jo, and V. Periwal, PRE 2019
V.A.Makarov, F. Panetsos, and O. de Febo, J. Neurosci. Methods 2005
M. J. Panaggio, M.-V. Ciocanel, L. Lazarus, C. M. Topaz, and B. Xu, Chaos 2019
*Short-time dynamics / trajectory correlations
R. Dahlhaus, M. Eichler, and J. Sandkühler, J. Neurosci. Methods 1997
K. Sameshima and L. A. Baccalá, J. Neurosci. Methods 1999
M.E.J. Newman, Nat. Phys. 2018
T. P. Peixoto, PRL 2019
M. G. Leguia, C. G. B. Martínez, I. Malvestio, A. T. Campo, R. Rocamora,
Z. Levnaji'c, and R. G. Andrzejak, PRE 2019
A. Banerjee, J. Pathak, R. Roy, J. G. Restrepo, and E. Ott, Chaos 2019

## Noise vs. frequency correlators vs. connectivity

$$
\text { *Two-point correlators } \quad C_{i j}=\left\langle x_{i}(t) x_{j}(t)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x_{i}(t) x_{j}(t) \mathrm{d} t
$$

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, PRL 2010
W.-X. Wang, J. Ren, Y.-C. Lai, and B. Li, Chaos 2012
E. S. C. Ching and H. C. Tam, PRE 2017
Y. Chen, S. Wang, Z. Zheng, Z. Zhang, and G. Hu, EPL 2016
$\boldsymbol{C} \propto \boldsymbol{L}^{\dagger}$
H. C. Tam, E. S. C. Ching, and P.-Y. Lai, Physica A 2018

## Noise vs. frequency correlators vs. connectivity

*Two-point correlators

$$
C_{i j}=\left\langle x_{i}(t) x_{j}(t)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x_{i}(t) x_{j}(t) \mathrm{d} t
$$

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, PRL 2010
W.-X. Wang, J. Ren, Y.-C. Lai, and B. Li, Chaos 2012
E. S. C. Ching and H. C. Tam, PRE 2017
Y. Chen, S. Wang, Z. Zheng, Z. Zhang, and G. Hu, EPL 2016
$\boldsymbol{C} \propto \boldsymbol{L}^{\dagger}$
H. C. Tam, E. S. C. Ching, and P.-Y. Lai, Physica A 2018

Reconstruction of the network Laplacian matrix via inversion of the equal time, 2 -point correlation matrix

## Noise vs. frequency correlators vs. connectivity

*Two-point correlators

$$
C_{i j}=\left\langle x_{i}(t) x_{j}(t)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x_{i}(t) x_{j}(t) \mathrm{d} t
$$

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, PRL 2010
W.-X. Wang, J. Ren, Y.-C. Lai, and B. Li, Chaos 2012
E. S. C. Ching and H. C. Tam, PRE 2017
Y. Chen, S. Wang, Z. Zheng, Z. Zhang, and G. Hu, EPL 2016
$\boldsymbol{C} \propto \boldsymbol{L}^{\dagger}$
H. C. Tam, E. S. C. Ching, and P.-Y. Lai, Physica A 2018

Reconstruction of the network Laplacian matrix via inversion of the equal time, 2-point correlation matrix

Either you have the full matrix, i.e. from a complete measurement, or you have nothing.

## Noise vs. frequency correlators vs. connectivity

*Two-point correlators

$$
C_{i j}=\left\langle x_{i}(t) x_{j}(t)\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} x_{i}(t) x_{j}(t) \mathrm{d} t
$$

J. Ren, W.-X. Wang, B. Li, and Y.-C. Lai, PRL 2010
W.-X. Wang, J. Ren, Y.-C. Lai, and B. Li, Chaos 2012
E. S. C. Ching and H. C. Tam, PRE 2017
Y. Chen, S. Wang, Z. Zheng, Z. Zhang, and G. Hu, EPL 2016
$\boldsymbol{C} \propto \boldsymbol{L}^{\dagger}$
H. C. Tam, E. S. C. Ching, and P.-Y. Lai, Physica A 2018

Reconstruction of the network Laplacian matrix via inversion of the equal time, 2 -point correlation matrix

Either you have the full matrix, i.e. from a complete measurement, or you have nothing.

What can we do if we access only to a subset of all agents ?

## Earlier works

## PHYSICAL REVIEW LETTERS 120, 084101 (2018)

Robustness of Synchrony in Complex Networks and Generalized Kirchhoff Indices

```
M. Tyloo, \({ }^{1,2}\) T. Coletta, \({ }^{1}\) and Ph. Jacquod \({ }^{1}\)
\({ }^{1}\) School of Engineering, University of Applied Sciences of Western Switzerland HES-SO, CH-1951 Sion, Switzerland \({ }^{2}\) Institute of Physics, EPF Lausanne, CH-1015 Lausanne, Switzerland
```

> Trace of frequency correlation matrix = trace of graph Laplacian Trace of position correlation matrix = trace of inverse Laplacian

## Earlier works

Robustness of Synchrony in Complex Networks and Generalized Kirchhoff Indices
M. Tyloo, ${ }^{1,2}$ T. Coletta, ${ }^{1}$ and Ph. Jacquod ${ }^{1}$
${ }^{1}$ School of Engineering, University of Applied Sciences of Western Switzerland HES-SO, CH-1951 Sion, Switzerland ${ }^{2}$ Institute of Physics, EPF Lausanne, CH-1015 Lausanne, Switzerland

> Trace of frequency correlation matrix = trace of graph Laplacian Trace of position correlation matrix = trace of inverse Laplacian

## SCIENCE ADVANCES | RESEARCH ARTICLE

APPLIED SCIENCES AND ENGINEERING
The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities

```
M. Tyloo ',2, L. Pagnier r', , P. Jacquod (',3*
```

Diagonal frequency correlators = diagonal elements of graph Laplacian Diagonal position correlators = diagonal elements of inverse Laplacian

Noise vs. frequency correlators vs. connectivity


Noise vs. frequency correlators vs. connectivity


Noise vs. frequency correlators vs. connectivity


Noise vs. frequency correlators vs. connectivity

-direct extraction of Laplacian -partial inference from partial measurements

$$
\left\langle\delta \dot{x}_{i} \delta \dot{x}_{j}\right\rangle=\xi_{0}^{2} \sum_{k=q}^{\infty}\left(-\tau_{0}\right)^{k}\left(\mathbb{J}^{k}\right)_{i j}
$$

## Sketch of the analytics (i)

## The model

Unperturbed dynamics
$\dot{\mathbf{x}}(t)=\mathbf{F}[\mathbf{x}(t)]$
$\mathbf{F}\left[\mathbf{x}^{*}\right]=0$

## Sketch of the analytics (i)

The model
Unperturbed dynamics $\quad \dot{\mathbf{x}}(t)=\mathbf{F}[\mathbf{x}(t)] \quad \mathbf{F}\left[\mathbf{x}^{*}\right]=0$
Linearization about steady-state + perturbation

$$
\delta \dot{x}=-\mathbb{J}\left(x^{*}\right) \delta x+\xi
$$

## Sketch of the analytics (i)

## The model

Unperturbed dynamics $\quad \dot{\mathbf{x}}(t)=\mathbf{F}[\mathbf{x}(t)] \quad \mathbf{F}\left[\mathbf{x}^{*}\right]=0$

Linearization about steady-state + perturbation

$$
\delta \dot{x}=-\mathbb{J}\left(x^{*}\right) \delta x+\xi
$$

Network/coupling structure

$$
\mathbb{J}_{i j}\left(\boldsymbol{x}^{*}\right)=-\partial F_{i}\left(\boldsymbol{x}^{*}\right) / \partial x_{j}
$$

## Sketch of the analytics (i)

## The model

Unperturbed dynamics $\quad \dot{\mathbf{x}}(t)=\mathbf{F}[\mathbf{x}(t)] \quad \mathbf{F}\left[\mathbf{x}^{*}\right]=0$

Linearization about steady-state + perturbation

$$
\delta \dot{x}=-\mathbb{J}\left(x^{*}\right) \delta x+\xi
$$

Network/coupling structure

$$
\mathbb{J}_{i j}\left(x^{*}\right)=-\partial F_{i}\left(x^{*}\right) / \partial x_{j}
$$

$\mathbb{J}\left(\boldsymbol{x}^{*}\right)$ is symmetric and positive semidefinite (undirected coupling; stable fixed point)

## Sketch of the analytics (ii)

Modal decomposition of $J$

$$
\delta \dot{x}=-\mathbb{J}\left(x^{*}\right) \delta x+\xi
$$

Real eigenvalues

$$
0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

Orthogonal eigenbasis $\quad\left\{\boldsymbol{u}_{\alpha}\right\}_{\alpha=1}^{n}$

$$
\boldsymbol{\delta} \boldsymbol{x}(t)=\sum_{\alpha} c_{\alpha}(t) \boldsymbol{u}_{\alpha}
$$

## Sketch of the analytics (ii)

## Modal decomposition of $J$

$$
\delta \dot{x}=-\mathbb{J}\left(x^{*}\right) \delta x+\xi
$$

Real eigenvalues

$$
0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

Orthogonal eigenbasis $\quad\left\{\boldsymbol{u}_{\alpha}\right\}_{\alpha=1}^{n}$

$$
\boldsymbol{\delta} \boldsymbol{x}(t)=\sum_{\alpha} c_{\alpha}(t) \boldsymbol{u}_{\alpha}
$$

Langevin equation for expansion coefficients

Solutions

$$
\begin{aligned}
& \dot{c}_{\alpha}(t)=-\lambda_{\alpha} c_{\alpha}(t)+\mathbf{u}_{\alpha} \cdot \boldsymbol{\xi}(t) \\
& c_{\alpha}(t)=e^{-\lambda_{\alpha} t} \int_{0}^{t} e^{\lambda_{\alpha} t} \mathbf{u}_{\alpha} \cdot \boldsymbol{\xi}\left(t^{\prime}\right) \mathrm{d} t^{\prime}
\end{aligned}
$$

Velocity correlator

$$
\left\langle\delta \dot{x}_{i}(t) \delta \dot{x}_{j}(t)\right\rangle=\sum_{\alpha, \beta}\left\langle\dot{c}_{\alpha}(t) \dot{c}_{\beta}(t)\right\rangle u_{\alpha, i} u_{\beta, j}
$$

## Sketch of the analytics (iii)

Two-point velocity correlators

$$
\delta \dot{x}=-\mathbb{J}\left(x^{*}\right) \delta x+\xi
$$

Need to define first and second moment of noise -> Orstein-Uhlenbeck

$$
\left\langle\xi_{i}(t)\right\rangle=0 \quad\left\langle\xi_{i}(t+\Delta t / 2) \xi_{j}(t-\Delta t / 2)\right\rangle=\xi_{0}^{2} \delta_{i j} \exp \left(-|\Delta t| / \tau_{0}\right)
$$

$$
\lim _{t \rightarrow \infty}\left\langle\delta \dot{x}_{i}(t) \delta \dot{x}_{j}(t)\right\rangle=\xi_{0}^{2}\left(\delta_{i j}-\sum_{\alpha} u_{\alpha, i} u_{\alpha, j} \frac{\lambda_{\alpha} \tau_{0}}{1+\lambda_{\alpha} \tau_{0}}\right)
$$

Note : $\langle\cdots\rangle=\lim _{T \rightarrow \infty} T^{-1} \int_{0}^{T} \cdots \mathrm{~d} t$

## Sketch of the analytics (iv) - noise with short correlation time

Two-point velocity correlators

$$
\delta \dot{x}=-\mathbb{J}\left(x^{*}\right) \delta x+\xi
$$

Need to define first and second moment of noise -> Orstein-Uhlenbeck

$$
\left\langle\xi_{i}(t)\right\rangle=0 \quad\left\langle\xi_{i}(t+\Delta t / 2) \xi_{j}(t-\Delta t / 2)\right\rangle=\xi_{0}^{2} \delta_{i j} \exp \left(-|\Delta t| / \tau_{0}\right)
$$

With short correlation time :


Note : $\langle\cdots\rangle=\lim _{T \rightarrow \infty} T^{-1} \int_{0}^{T} \cdots \mathrm{~d} t$

## Direct reconstruction



Relatively short correlation time

$$
\hat{\mathbb{J}}_{i j}=\left(\delta_{i j}-\left\langle\delta \dot{x}_{i} \delta \dot{x}_{j}\right\rangle / \xi_{0}^{2}\right) \tau_{0}^{-1}
$$

L. Pagnier and P. Jacquod, PanTaGruEl, Zenodo Repository (2019). doi.org/10.5281/zenodo. 2642175

## Partial reconstruction (i) : n=100 Đrdös-Rényi

Velocity correlators



Position correlators


## Partial reconstruction (i) : n=100 Brdös-Rényi

Velocity correlators
Position correlators


## Partial reconstruction (ii) : $\mathrm{n}=1000$ with $\mathrm{m}=100$ observable



## Geodesic distance



## Thank U's



Laurent Pagnier U of Arizona


Melvyn Tyloo LANL


Tommaso Coletta Sophia Genetics


Robin Delabays
HES-SO

