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Abstract

One of the most popular and innovative methods to analyse signals is by using Ordinal
Patterns (OPs). The OP encoding is based on transforming a (univariate) signal into a
symbolic sequence of OPs, where each OP represents the number of permutations needed
to order a small subset of the signal’s magnitudes. This implies that OPs are conceptually
clear, methodologically simple to implement, and robust to noise, and that they can be
applied to short signals. Moreover, they simplify the statistical analyses that can be carried
out on a signal, such as entropy and complexity quantifications. However, because of
the relative ordering, information about the magnitude of the signal at each timestamp
is lost—this being one of the major drawbacks of this method. Here, we propose a way
to use the signal magnitudes discarded in the OP encoding as a complementary variable
to its permutation entropy. To illustrate our approach, we analyse synthetic trajectories
from logistic and Hénon maps—with and without added noise—and real-world signals,
including intracranial electroencephalographic recordings from rats in different sleep-
wake states and frequency fluctuations in power grids. Our results show that, when
complementing the permutation entropy with the variability in the signal magnitudes,
the characterisation of these signals is improved and the results remain explainable. This
implies that our approach can be useful for feature engineering and improving Al classifiers,
as typical machine learning algorithms need complementary signal features as inputs to
improve classification accuracy.

Keywords: ordinal patterns; permutation entropy; signal analysis; feature extraction

1. Introduction

Since the beginning of the century, the boundaries of data mining have been pushed
due to the growing ability to obtain larger and more precise data sets. With increasing data
availability, we need to improve how we extract, manage, and analyse data [1] to uncover
the underlying mechanisms that generate the data or to quantify its uncertainty.

An entropy measures the average contents of the information, where information is
understood as the degree of uncertainty in an outcome (as defined by Shannon [2]). If an
outcome is highly unlikely to happen, then it carries significant information because it
would be surprising to record it, such as the presence of an outlier or an artefact in a signal.
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However, if an outcome is highly likely to happen, then it carries insignificant information
because one would expect it to appear, such as a periodic signal. Hence, entropy is highest
when any outcome is equally likely to happen, corresponding to a uniform probability
distribution that conveys the maximum uncertainty regarding all possible outcomes [2].

One of the most successful entropy methods introduced to characterise signals is the
permutation entropy [3]. Permutation entropy quantifies the average content of information
in an Ordinal Pattern (OP) sequence, which is obtained from the signal by dividing it into a
series of embedded vectors [3,4]. Each OP represents the number of permutations needed
to order the signal magnitudes within each embedded vector. The resultant symbolic
sequence is used to find the OP probabilities distribution. It is easier to perform statistical
quantifications—known as OP analysis—with these probabilities than from the original
signal, such as quantifying the uncertainty and complexity of the signal [5-7].

Due to its simplicity and robustness to noise, OP analysis (along with complexity
calculations) has had remarkable success [8-10], being used to distinguish between chaotic
and stochastic signals [11-18], as well as to characterise electrophysiological signals [19-26],
laser dynamics [27-34], climate systems [35—42], and financial trends [43-50], to name a
few. However, one of the main drawbacks in OP analysis is that the magnitude of the
signal at each timestamp is discarded, solely keeping the ordinal relationship between the
signal magnitudes.

To include this missing information, previous works have proposed modifica-
tions of the permutation entropy, such as modified permutation-entropy [51], weighted-
permutation entropy [52], amplitude-aware permutation entropy [53], improved permuta-
tion entropy [54], and continuous ordinal patterns [55]. These methods and approaches
introduce ad hoc assumptions that are supported by the effectiveness of the resultant
modification to the permutation entropy measure in improving the characterisation of
different datasets, but lack a theoretical framework that can validate their usage, limits,
and scalability in general scenarios.

Here, we propose an alternative approach, which is to include the standard deviation
of the signal magnitudes in the OP embedded vectors as a complementary variable to the
permutation entropy—specifically, the OP-averaged logarithm of the standard deviation
of the magnitudes in the ordinal pattern embedded vectors. The formalism behind our
approach is justified in the works of Politi [56,57], who showed that this OP-averaged
standard deviation of the signal magnitudes is needed—along with the information di-
mension of the system [58]—to make the permutation entropy of a signal tend towards its
Kolmogorov-Sinai (KS) entropy [59,60]. KS entropy is a rigorously defined observable with
invariant characteristics, contrary to permutation entropy, which can depend on the signal
length and embedding choice. This provides fundamental ground to our approach, which,
instead of modifying the permutation entropy, evaluates two easily accessible contributions
to the Kolmogorov-Sinai entropy.

Because this tendency towards Kolmogorov-Sinai entropy [59,60] is only achieved
when using the information dimension of the signal (which is tricky to find in finite real-
world signals), we propose using this OP-averaged quantity of the standard deviation
as a complementary variable to the permutation entropy value instead of a measure that
combines both, discarding the need to find the information dimension and increasing the
explainability of our results. In particular, we show that signal characterisation can be
improved when using these standard deviations to complement the permutation entropy
analysis, where we focus mostly on calculating the Rényi min-entropy [61]. Our conclusions
are based on analysing numerically generated trajectories from coupled logistic [62—64]
and Hénon [65] maps (with and without observational noise), real-world signals from
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intracranial electroencephalographic recordings of rats in different sleep-wake states, and
frequency fluctuations from 4 locations in the European power grid.

2. Materials and Methods
2.1. Signals: General Notions

We only consider digital signals, i.e., where time is discrete and the magnitudes
are quantised. These signals can be numerically generated (synthetic) or experimentally
measured, where their digital nature is due to the precision of the computer or to analogue-
to-digital converters, respectively. The signals we analyse come from a pair of coupled
logistic maps, a Hénon map,—both being synthetic bi-variate trajectories—intracranial
electroencephalographic (EEG) recordings from rats and frequency recordings at 4 locations
in the European power grid.

We write a signal as {xt}thl = {xq1,x2,...,x7}, where x; is the magnitude at the
discrete time index t € N, x; is the initial state, and T is the length of the signal. A
signal can be resampled using an embedding delay T € N, such that {x1,x,...,x7} —
{x1, X147, .-+, X140t }, where n = | (T — 1)/7] is the smallest integer closest to (T — 1) /7.
This resampling can filter the high frequencies in a signal, but we set T = 1 for all
our analyses.

2.2. Synthetic Models: Map Iterates

We generate bi-variate signals from coupled, identical, logistic maps by iterating the
following equations:

Ve = (L—e) fys) +ef(xe), @

where f(z) = rz(1l — z) is the logistic mapping (with z = x; or y; for t = 1,...,T),

{ Y= (L=¢) f(xe) +ef(yr),

r € (3,4] C Ris the control parameter, and ¢ € [0,1] C R is the coupling strength between
the maps. When ¢ = 0 in Equation (1), the x and y maps are decoupled, i.e., they are
isolated. As r is increased from r = 3 to r = 4, an isolated logistic map undergoes a series of
period-doubling bifurcations, taking the solutions from periodic to chaotic trajectories [62].
When 0 < & < 1, the maps are coupled and the resultant trajectories can become more
complex (including intermittent and hysterical behaviours) [63,64].
The Hénon map is given by [65]
{ X1 = l—ax?+uy,
_ (2)
Yer1 = by

where a2 and b are the control parameters, which, depending on their values, can gen-
erate periodic (e.g.,, when 2 = 1.0 and b = 0.3) or chaotic (e.g.,, when a = 1.4 and
b = 0.3) trajectories.

For both maps (Equations (1) and (2)), we use the OP analysis of the x component
for different control parameter values (i.e., 7, €, and a), fixing its length to T = 10° after
removing a transient of 6t = 103 iterations from the initial condition x; = 0.65, y1 = 0.44.
In this way, we discard the bi-variate nature of these maps and focus on uni-variate signals.
In Appendix A, we show the results when we analyse the y component instead. To
analyse the effects of observational noise, we add white Gaussian noise to these signals by
independently drawing identically distributed random numbers from a normal distribution
and changing its strength (i.e., its standard deviation).
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2.3. Animal Model: EEG Recordings

We use EEG recordings from 11 healthy and freely moving Wistar rats during their
natural sleep—wake cycle, who can access food and water within the (sound-attenuated
and Faraday-shielded) recording box. These rats have intracranially implanted electrodes,
monitoring active wakefulness (AW), rapid eye movement (REM) sleep, and non-REM
sleep. Details on the surgical procedure and experimental conditions can be found in
Refs. [20-22]. The experiments are in agreement with Uruguay’s National Animal Care
Law (No. 18611) and with the “Guide to the care and use of laboratory animals” [66]. These
experiments were approved by the Institutional Animal Care Committee (Comisién de
Etica en el Uso de Animales), Exp. No. 070153-000332-16.

The EEG signals we analyse are obtained by obtaining the differences between the
electrode of interest and the Cerebellum (the reference). We focus on five electrodes, those
bilaterally placed above the primary motor (M1) and somatosensory (S1) cortices, plus
the right olfactory bulb (OB), discarding the two electrodes from the secondary visual
(V2) cortex (because they are too close to the Cerebellum, increasing the relevance of
observational noise). These EEGs have a sampling frequency of 1024 Hz and a resolution
of 16 bits. To remove the degeneracies in the signal magnitudes due to the analogue-
to-digital converter, we add white noise with an amplitude given by the range of the
(electrode-dependent) EEG times 216

AW is defined by low-voltage fast waves in M1, a strong theta rhythm in S1
(4-7 Hz), and relatively high electromyographic activity. REM sleep is defined by low-
voltage fast-frontal waves, a regular theta rhythm in S1, and silent electromyography
(excluding occasional twitches). NREM sleep is determined by the presence of high-voltage
slow-cortical waves (1-4 Hz), sleep spindles in M1 and S1, and a reduction in electromyo-
graphic amplitudes. Additionally, a visual scoring is performed to discard artefacts and
transitional states. The EEGs for these states are concatenations of artefact-free 10 s win-
dows that meet each state criteria. To analyse them, we fix their lengths to T = 90 x 1024,
which is the shortest length of the concatenated EEGs.

2.4. Grid Model: Frequency Recording

We consider voltage frequency recordings at 4 different locations in the European
synchronous electric power grid [67]. Under normal operations, the frequency of the
grid fluctuates at around 50 Hz, due to the mismatch between power production and
consumption. These fluctuations impact all the buses in the grid that follow the same
overall variation around 50 Hz. On top of this common trend, additional signals coming
from the grid dynamics or the spreading of disturbances might impact each bus differently.
Two of the recordings were made in Germany, one in Karlsruhe, and the other in Oldenburg.
The two other recordings were from Lisbon, Portugal, and Istanbul, Turkey. The overall
datasets consist of 4 time-series of about 41 days of synchronous frequency recordings
sampled at 1 Hz between July and August, 2019 [67]. For our analysis, we chose five
different 24 h intervals, each of length T = 86,400.

2.5. Method: Encoding Signals into Ordinal Patterns

We followed Bandt-Pompe’s method [3] to encode uni-variate signals.

First, we divide the signal into quasi-non-overlapping vectors with D compo-
nents, where D > 1 is a natural number known as the embedding dimension. That
is, we transform the signal {xt}thl to a series of vectors {xq,...,xp}, {xp,..., x2p_1},
{xZD,l, .. .,X3D72}, cey {x(m—l)(D—l)-Hl' . .,xm(D_l)}, where m = [T/(D — 1)—| is the
largest integer closest to T/(D — 1). Then, we transform each vector into an integer,
ranging from 1 to D!, according to the number of permutations needed to order their
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elements in an increasing fashion (plus 1). These are known as Ordinal Patterns (OPs), and
the overall process encodes the signal into a symbolic sequence that preserves the local
relationships between consecutive time-points but discards their magnitudes.

For example, when D = 2, if x; < xp, then {x7,x,} — 1, because no permutations are
needed to order the two-element vector. If x; > xp, then {x1,x2} — 2, because we need one
permutation. In total, there are D! = 2 possible permutations between the components of
the D = 2 embedded vector. We encode all our signals using D = 3, 4, or 5, which implies
symbolic sequences with a maximum of D! = 6, 24, or 120 different OPs, respectively. For
the length T = 90 x 1024 of the EEG signals, the average frequency of the appearance of
any given OP when D = 5 is approximately T/D! = 768 (being higher for D < 5). A
similar number is obtained for the power grid frequency recordings. Consequently, we
have high statistical power when finding the marginal probability distribution of the OPs
and the other statistical measures.

2.6. Statistical Measures: Permutation Entropy, Rényi Min-Entropy, and Magnitude Variability

The information content of an OP is log[1/P(«)] (as defined by Shannon [2]), where
P(«) is the probability of having OP « (such that Zvlcjil P(«) = 1). The Shannon entropy [2]
of the OP sequence, H, is known as the permutation entropy [3], and is found from

o-Eromfd]-(ull) o

a=1

with (-) serving as the mean with respect to the probability distribution {P(x)}>!, =

a=1

{P(1),...,P(D!)}. The maximum value of H is Hnax = log,(D!), which is known as
the Hartley or max-entropy and is achieved if and only if P(a) = 1/D! for all « (a uniform

distribution). We use log, in Equation (3) so that the unit is the bit.

D!
a=1

is close to the uniform distribution, we use the Rényi min-entropy (in bits), He, which is
defined by [61]

To improve the differences in the permutation entropy values of {P(«) when it

1
He = lim

q—)ool—qugz

D!
). P'(a)
a=1

= n}){in{logz{p(l“)} } = —1og2[m3x{p(a)}] (4)

This means that the information content of any OP sequence is bounded between Hmax
and He.
To quantify the variability of the signal magnitudes within the OPs, we use

D!
(g ) = ). P(@) logs e5(x)], ©)
o=
where (-) is the mean with respect to the OP probability distribution (as in Equation (3))
and cj(a) is the standard deviation of the signal magnitudes at the j-th component (with
j = 1,...,D) of all the embedded vectors that correspond to the OP symbol « (with
«=1,...,D!") [56,57]. An example of the resultant values of Equation (5) for an EEG of the
right primary motor cortex (rM1) of a representative rat during AW is shown in Figure 1.
We note that the variation in the values of (log,[ox(j)]) for different entries of j is min-
imal, as illustrated in Figure 1. Therefore, we work with the average value (but any choice
of j would hold similar results and our conclusions would remain unchanged). Namely,

D
ave{(1og, [0])} = ;];aogz [o])- ©
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Consequently, when using Equation (3) [or Equation (4)] we can quantify the average
[minimum] information content in an OP sequence, but lose the information from the
magnitudes that compose the embedded vectors forming the OPs. In contrast, using
Equation (6) we can quantify the average magnitude variability of these embedded vectors,
complementing the information provided by H [or Hs].
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Figure 1. Example of the variability of EEG signal magnitudes within each ordinal pattern (OP).
The EEG signal is from the right primary motor cortex (rM1) of a representative rat during active
wakefulness and the OPs are constructed using an embedding dimension D = 3 and delay 7 = 1.
The top three left panels show the values of the standard deviation of the EEG signal ¢j(«) in the
components (j = 1,2, 3) of the embedded vectors for each OP symbol (x =1, ...,6). The bottom left
panel shows the OP probability distribution {P(«)}P*, = {P(1),..., P(D! = 6)}. The right panel
shows the mean (red squares) with respect to { P(«) }5_, for each set of log, [(7]- (zx)} values, (log, [0']'] ),

2
with error bars defined by :I:\/ (log, [0']} ) — (log, [Uj] )2,

3. Results
3.1. Ordinal Pattern Analysis of the Noiseless Map Iterates

From the analysis of the OP sequences for the coupled logistic maps (Equation (1))
and Hénon map (Equation (2)) for different parameters, we can see that when the dynamics
change slightly, the min-entropy He (Equation (4)) can have small variations, but the
average magnitude variability avg;{(log, [0j])} (Equation (6)) can change drastically.

Figure 2 shows that when the coupling strength is ¢ = 0.01, the red circle (v = 3.60) and
the cyan diamond (r = 3.80) have similar H., values, close to 2 and 2.05 bits (vertical axis),
respectively. In contrast, their avg;{(log, [0j])} values differ by an order of magnitude,
being close to —5.38 and —4.22 (horizontal axis), respectively. Similarly, when € = 0.2, the
red triangle (r = 3.60) and the black star (r = 3.75) have an avg;{(log, [0j])} differing by
an order of magnitude (horizontal axis) but similar H, values, which are close to 1.92 and
1.95 bits (vertical axis), respectively.

However, the opposite effect is also observed in Figure 2. For example, when ¢ = 0.01,
the black square (r = 3.75) and the yellow triangle pointing upward (r = 3.9) have
significantly different Ho, values (close to 1.82 and 2.62 bits, respectively), but their
avg{(log, [0j])} is similar (close to —4.35 and —4.40, respectively). The same happens
for e = 0.2, where the black star (r = 3.75) and the yellow triangle pointing downward
(r = 3.9) have similar avg {(log, [0j])} values (close to —4.55 and —4.50, respectively) but
significantly different He, (close to 1.94 and 2.60 bits, respectively).
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The dynamics of the coupled logistic maps shown in Figure 2 follow the bifurcation-
like diagram of Figure 3. We can see that the dynamical changes driving the similarities
(or dissimilarities) in Heo or avg;{(log, [c;])} values in Figure 2 are nearly unnoticeable in
Figure 3 by performing a direct visual inspection. This implies that the dynamical changes
must be happening at smaller scales than the length of the signal, which is likely why the
OP encoding is able to capture the different chaoticities (i.e., different He, values) emerging
for the different control parameters and local changes in the magnitude of the x; signals (i.e.,
different avg;{(log, [0j])} values). Nevertheless, these dynamical changes are revealed by
the maximum Lyapunov exponent (MLE) of the bidimensional system [68], as can be seen
from Table 1.

2.7 7
4 |®r=36,e=001 A
26 |®mr=375€¢=001 v
2 4 |0r=38,e=001
= 254 |Ar=39,¢=001
o0 4 | »r=36,e=02
%«2.4j *1r=375,e=02
fé‘ 1 [*r=38,6=02
237 |vr=39,6=02
k= ]
8224
5 ] %«
g 2.1
~ 1 ¢
% 27 @
b x
194 *
18 7 T ‘ T T T T T T T I T T T T .\ T ]
54 -52 -5 —4.8 —4.6 —44 —4.2

avg;{(logy[o(5)])or}

Figure 2. Rényi min-entropy and average magnitude variability of the ordinal pattern (OP)
embedded vectors from two coupled identical logistic maps. The map iterates for the OP encoding
are obtained from Equation (1), where the coupling strength ¢ is set to 0.01 or 0.2 and the map
parameter r is set to 3.6 (red symbols), 3.75 (black symbols), 3.8 (cyan symbols), or 3.9 (yellow
symbols). We use D = 4 and t = 1 for the OP encoding of the iterates of the x component (one

map)—see Section 2 for details.

14 15

09~ 09-
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Figure 3. Bifurcation-like diagrams for coupled identical logistic maps. The left [right] panel shows
the signal of one map, x; (Equation (1)), when ¢ = 0.01 [e = 0.2] as r is changed according to the

values used in Figure 2.
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Table 1. Maximum Lyapunov exponent A (MLE) of the coupled logistic maps for the parameters in
Figure 2. These are found by using Wolf’s et al. method [68], using an embedding dimension of 2,
a time delay of 1, a maximum number of iterations of 10 to track for divergence (which avoided

saturation), and a 10% minimum separation to avoid temporal neighbours.

(r,¢) (3.6,0.01) (3.75,0.01) (3.8,0.01) (3.9,0.01)
A 0.16 0.39 0.42 0.45

(r,¢) (3.6,0.2) (3.75,0.2) (3.8,0.2) (3.9,0.2)
A 0.18 0.36 0.43 0.49

We draw similar conclusions when analysing the Hénon map. For example, the red
circle (a = 1.15) and the black square (a2 = 1.20) in Figure 4 have similar He, values (close
to 1.83 and 1.85 bits, respectively), but have different avg { (log, [7j]) }: close to —2.85 for
the red circle and —2.68 for the black square, respectively.

2.1
4 |@ea=1.15
]l |ma=12 »>
3 205 |pa=134 .
jae] 1 ]1aa=1.35
é 5 ] |*xa= 1.4
<] 4 | »a=1.405
= ]
=] i
& ]
g 1954
E - A
S ] ¢
g 19
~ ]
5 1
1.85 n
] o
1.8 L ‘ L ‘ T T T T ‘ L ‘ T T T T ‘ T T 17T ‘ L ‘ T T T T ‘

285 28 —275 —27 -265 -26 -255 -25 -245
avg;{(logs[o(j)])or}

Figure 4. Rényi min-entropy and average magnitude variability of the ordinal pattern (OP)
embedded vectors from a Hénon map. The map iterates are obtained from Equation (2) with b = 0.3
and the other parameter set to either 2 = 1.15 (red circle), 1.20 (black square), 1.34 (cyan diamond),
1.35 (yellow triangle), 1.40 (black asterisk), or 1.405 (green triangle). We use D = 4 and T = 1 for the
OP encoding of the iterates of the x component (as in Figure 2)—see Section 2 for details.

In these cases (a = 1.15,a = 1.20,a = 1.34,a = 1.35, a = 1.40, and a = 1.405), the
dynamics of the map have a chaotic regime, with minimal apparent differences (similarly
to Figure 3)—this can be corroborated using the bifurcation diagram of the Hénon map
(see [69] for a bifurcation diagram). However, as a is increased for the analysed values,
the chaoticity of the signal is also increased. This can be quantified using the Lyapunov
exponents of the system (as Table 2 shows), and as Figure 4 shows, it can also be quantified

by using He, and avg,{ (log, [g3])}-

Table 2. Maximum Lyapunov exponent A (MLE) of the Hénon map for the parameters in Figure 4.

These are found as shown in Table 1.

a 1.15 1.2 1.34 1.35 1.4 1.405
A 0.27 0.30 0.36 0.37 0.42 0.41

Overall, these results (Figures 2 and 4) show that using the OP Rényi min-entropy in
conjunction with the average signal variability per OP improves the characterisation of the
underlying map dynamics. Moreover, we can see that these results (Figures 2 and 4) scale



Entropy 2025, 27, 840

9of 17

with the noise and the use of different embedding dimensions D because avg]-{ (log, [Uj] )}
follows a power-law behaviour as a function of DT, with an exponent that depends on the
noise strength (see [56,57] for details), which can be useful to distinguish between chaotic
and stochastic signals. This is corroborated in Figures 5 and 6 for the coupled logistic maps
and Hénon map, respectively. Moreover, these results remain invariant when using the
other coordinate, as Figures A1l and A2 show in the Appendix A, which is expected from
Takens embedding theorem [70].

* °
1 -
&2
2
=34
2 ¢ o
& o
S 4
~ | ]
-
=
5 =5
. | ]
—6 — u
-7 ‘ ‘ ‘ e S
2 25 3 35 4 45 5

D

Figure 5. Average magnitude variability of the ordinal pattern sequences from two coupled
identical logistic maps as a function of the embedding dimension D and noise strength. Black
squares correspond to noiseless iterates, cyan diamonds to observational noise with a standard
deviation of 1071, and red circles to observational noise with a standard deviation of 10°. The map
parameters for all symbols are set such that r = 3.6 and € = 0.01 (Equation (1)). Two reference lines
are included with slopes of —2 (orange) and —1/2 (red).

0
e [}
-0.5 °
~ -1
=_15*
=
b
o =2
20
= ¢ ¢
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CE
—3.5 -
| |
_4 T ‘ T T ‘ T T T ‘ T T T T ‘ L ‘ LI ‘
2 25 3 3.5 4 4.5 5

D

Figure 6. Average magnitude variability of the ordinal pattern (OP) sequences from a Hénon map
as a function of the OP embedding dimension and noise strength. Filled symbols have the same
observational noise as in Figure 5. The map parameters of the Hénon map are b = 0.3 and a2 = 1.15
(Equation (2)). Two reference lines are included with slopes of —2 (orange) and —1/2 (red).

3.2. Ordinal Pattern Analysis of the EEG Recordings

The sleep-wake states of active wakefulness (AW), rapid-eye movement (REM)
sleep, and non-REM (NREM) sleep have different electrophysiological characteristics (see
Section 2.3). However, when focusing solely on frequency or permutation entropy analyses,
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some of these differences are lost [20-22]. Here, we show that using the average signal
variability per OP (avg;{(log, [;]) }) improves the differentiation between the states, even
when accounting for natural inter-animal variability.

The results of the EEGs for the three sleep-wake states coming from the right OB, M1,
and S1 of 11 rats are shown in Figure 7—we can find similar results for the left hemisphere’s
M1 and S1 cortices. Panels B (OB), C (M1), and D (51) show that AW has the highest value
of He, for all animals—with two exceptions, in the S1 cortex (panel D, for red filled circles)—
but mid-range values of avg;{(log,[c;])}. This implies that the Rényi min-entropy can
distinguish considerably well between wakefulness and sleep states. However, the values
of He, for REM and NREM are similar for all electrodes.
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Figure 7. OPs analysis for EEG recordings from 11 rats in three sleep-wake states: active wakefulness
(AW), rapid eye movement (REM) and non-REM (NREM) sleep. (A) Location of the electrodes for
the EEG recordings corresponding to the right olfactory bulb (OB), and the primary motor (M1) and
somatosensory (S1) cortices. (B-D) Rényi entropy vs. average magnitude variability, respectively, for
BO, M1, and S1 electrodes. The embedding dimension for the OPs is D = 5.

In contrast, the values of avg {(log, [0j])} for REM and NREM sleep differ by approx-
imately an order of magnitude in most animals. This is in accordance with the type of
waves present in these sleep states: REM has low-voltage fast-frontal waves but NREM
has high-voltage slow-cortical waves (see Section 2.3). Consequently, the AW, REM, and
NREM states are fairly differentiated when using He, and avg]-{ (log, [Uj] ) } simultaneously.
We note that this differentiation is improved as the cortical location considered is further
away from the reference electrode, which in our case is the right OB and Cerebellum,
respectively. We also note that these results and conclusions remain unchanged when using
H (Equation (3)) instead of He, (Equation (4)).

3.3. Ordinal Pattern Analysis of Grid Frequency Recordings

The grid frequencies at all the buses in the European grid typically follow the same
overall trend, which is close to 50 Hz on average [71]. This global variation is due to the
mismatch between power generation and consumption, and is typically slow compared
to the grid intrinsic timescales. The main differences between each recording are the
fluctuations around that common trend. The Rényi min-entropy vs. average magnitude
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variability plane is shown in Figure 8 for 5 different 24 h recordings from four different
locations in the synchronous European grid. As expected, one observes that, for each
day (different symbols) the values of avg {(log, [0j])} at the different locations (different
colours) are very similar. Indeed, the amplitude of the time-series is mainly due to the
variation in the common signal around 50 Hz. Interestingly, the value of He for each
location seems to stay the same for different time intervals, i.e., for KA, OL, PT, and TU,
respectively, at close to 2.4 bits, 2.8 bits, 3.1 bits, and 3.7 bits. This ordering of He can
be understood from the locations in the grid where the recordings were performed. It
was found that the frequency fluctuations at one bus from the common overall trend are
determined by the inverse of its resistance centrality in the grid [72]. One therefore expects
recordings at the periphery of the grid to be more impacted by noise than those closer
to the centre of the grid. Both KA and OL are rather central in the grid, which suggests
that these recordings are essentially in line with the common trend around 50 Hz. On the
other hand, PT and TU are peripheral in the grid, which suggests that their recordings are
more impacted by randomness around the common trend. Thus, the Rényi min-entropy
should be smaller for KA and OL compared to PT and TU, which is what can be observed
in Figure 8.
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Figure 8. OPs analysis for GPS-synchronised grid frequency recording from 4 different locations
in the European synchronous electric power grid: Karlsruhe (KA), Oldenburg (OL), Lisbon (PT),
Istanbul (TU). Rényi min-entropy vs. average magnitude variability for the different locations and
five different 24 h periods of recordings (respectively corresponding to the five different symbols).
The embedding dimension for the OPsis D = 5.

4. Discussion

For many real-world systems, the intrinsic dynamics are so complex that inferring a
mathematical model for the underlying dynamical process generating signal measurements
becomes a very challenging task—if feasible at all. An alternative approach is to analyse
the evolution of the information contained in the signals one can measure. While this
approach fails to provide a detailed model for the microscopic dynamics, if successful, then
it allows for different dynamical regimes and changes in the parameters of the system to
be characterised.

With this in mind, here we propose to include the magnitude variability in the signal
in the ordinal pattern (OP) encoding. Our aim is to complement the permutation entropy
analysis, to improve the characterisation of the dynamical behaviours observed from
the time-series, and to maintain explainable results. For example, if instead of using
our complementary variables, we combine them, then there would be cases when the
resultant modified PE value could not tell us whether it is increased (or decreased) because
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the PE value increased or because the standard deviations of the amplitudes increased
(or decreased).

We first tested our approach on synthetically generated signals from chaotic bidimen-
sional mappings under different parameter values. Specifically, we used coupled logistic
maps (Equation (1)) and the Hénon map (Equation (2)). We analysed the signals coming
from one of the two coordinates available for these maps because the OP encoding can only
be applied to univariate signals.

The main reason to choose bidimensional mappings is that there are proofs show-
ing that the permutation entropy of one-dimensional mappings directly relates to the
Kolmogorov-Sinai entropy [73,74], which is not the case for higher-dimensional mappings.
Because of this difference, it is expected that the characterisation of a dynamical regime
by the permutation entropy for a higher-dimensional system is incomplete. We show that
this problem is mitigated by including the standard deviation of the signal (in the embed-
ded vectors forming the OPs) to the permutation entropy quantification (Figures 2 and 4).
We also find that our approach improves the characterisation of the dynamical regimes
even under significant levels of observational noise and different choices of embedding
dimension (Figures 5 and 6).

We then analysed real-world EEG signals registered intracranially from 11 rats under
free conditions throughout the sleep—wake cycle. We considered these signals because
they come from a system—the brain—where the underlying microscopic dynamics are
unknown (i.e., we lack a differential equation that models the system), there are inherent
noise sources affecting the quality of the signal measurements, and the system has been
hypothesised to have some level of chaoticity [75]. Moreover, in practice, the polysomno-
graphic classification of sleep-wake states requires highly trained professionals to recognise
characteristic electrophysiological patterns that vary according to the sleep stage, plus
depend on anatomy and individual variability. However, the electrophysiological variabil-
ity introduced by experimental manipulations (in research settings) or disease (in clinical
settings), requires that whichever automatic sleep scoring classifier used is interpretable
and not a black box.

Our results show that, for most cortical locations, independently of the embedding
dimension used and the natural inter-animal variability, the states of active wakefulness,
rapid-eye movement (REM) sleep, and non-REM sleep can be distinguished in the plane
formed by the Rényi min-entropy and signal variability (Figure 7).

Finally, we analysed frequency recordings in the European electric power grid. We
found that the standard deviation of the signals at different locations is similar during
the same time intervals. This is expected, as the frequency in the whole grid essentially
fluctuates around a common value close to 50 Hz with similar fluctuation magnitudes.
We also found that the permutation entropy is higher for recordings at the periphery of
the grid compared to those closer to the centre, which can be explained by the centrality
of the recorded buses. Overall, our method identified the important features of the grid
frequency dynamics.

Our analyses are limited in terms of the choice of embedding delay and overlap
between consecutive embedded vectors; namely, for all our results T = 1 and the embedded
vectors are quasi-non-overlapping, only sharing a single data point from the signal. The
reason to restrict T to 1 is that we can consider the entire signal, whereas T > 1 implies
consideration of sub-sampled signals. On the other hand, increasing the overlapping
of the embedded vectors creates artificial correlations between consecutive OPs (which
are irrelevant for most permutation entropy calculations, but can affect conditional or
transfer entropy calculations). For example, with a larger overlap than the one we choose
here, two consecutive embedded vectors with D = 3 would share two points, such that
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{xt, xp41, X112} and {x411, X442, X443 }. This would imply that, if x;11 > x;4p, then the OP
for the second embedded vector would be conditioned to this increasing relation that is
present in the previous embedded vector, and all other OP possibilities would be forbidden
(i.e., the OP would be artificially forced to take on particular OP symbols). Consequently,
our choice of encoding parameters allows us to keep all the signal and have a maximum
number of embedded vectors with null redundancy between consecutive ones.

Finally, we note that a natural extension to our approach could consider a three-
dimensional space, composed of the permutation entropy, the signal variability within the
embedded vectors, and a complexity measure, such as the Jensen-Shannon complexity,
which could improve the characterisation of other dynamical regimes (such as non-chaotic
ones). Moreover, in practical applications where the signals are short, instead of considering
the standard deviation of the signal for the embedded vectors, one could consider the inter-
quartile range, which is a statistically robust descriptor that is unaffected by outliers.
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Appendix A. Additional Figures for the Logistic and Hénon Maps
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Figure Al. Rényi min-entropy and average magnitude variability of the ordinal pattern (OP)
embedded vectors from two coupled identical logistic maps. The map iterates for the OP encoding

are obtained from Equation (1), where the coupling strength ¢ is set to 0.01 or 0.2 and the map
parameter r is set to 3.6 (red symbols), 3.75 (black symbols), 3.8 (cyan symbols), or 3.9 (yellow
symbols). We use D = 4 and T = 1 for the OP encoding of the iterates of the y component (one

map)—see Section 2 for details.
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Figure A2. Rényi min-entropy and average magnitude variability of the ordinal pattern (OP)

embedded vectors from a Hénon map. The map iterates are obtained from Equation (2) with b = 0.3

and the other parameter set to either 4 = 1.15 (red circle), 1.20 (black square), 1.34 (cyan diamond),

1.35 (yellow triangle), 1.40 (black asterisk), or 1.405 (green triangle). We use D = 4 and T = 1 for the

OP encoding of the iterates of the y component (as in Figure A1)—see Section 2 for details.
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