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WARNING

◼ This is a very, very preliminary progress 
report of a newly funded project:

JSPS KAKENHI Grant # 23H03414: 
Automatic derivation of dynamical 
models from temporal network data 
using a graph rewriting system

— Algorithms and software still under initial 
development

— Feedback most welcomed!!
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Motivation

Pattern Discovery 

vs.

Mechanistic Modeling
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Pattern Discovery 
(Descriptive Modeling)

◼ Identifying and 
summarizing patterns in 
the data

— Descriptive statistics

— Machine learning, 
data science, AI

— Classification, 
prediction, clustering
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Mechanistic Modeling 
(Rule-Based Modeling)

◼ Explaining the hidden 
mechanisms and rules 
that may have produced 
the observed patterns

— Theories, principles, 
dynamical equations, 
simulations

— Can provide deeper 
understanding and 
insight

— “System 
identification”
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Current State of DS/ML/AI



We Want Balance and Integration

≈



Specific Application Domain:
Temporal Networks

◼ Complex networks whose topologies 
change over time

— Network analysis extended to time-varying 
network data

— Relevant to epidemic modeling 
and social media analysis

— Mostly descriptive on topological 
changes only (i.e., no dynamics)
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Dynamical Systems Counterpart: 
Adaptive Networks

◼ Complex networks whose states and 
topologies co-evolve, often over similar 
time scales

— Node states adaptively change 
according to link states

— Link states (weights, connections) 
adaptively change according to 
node states
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Gross, T., & Sayama, H. (2009). Adaptive Networks. Springer.
Sayama, H., Pestov, I., Schmidt, J., Bush, B. J., Wong, C., Yamanoi, J., & 
Gross, T. (2013). Comput. Math. with Appl., 65(10), 1645-1664.



Research Objective

◼ To develop a novel modeling method that 
can derive dynamical model equations of 
temporal network behaviors directly from 
real-world temporal network data

— Toward understanding of “how” and “why”
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Basic Approach: 
Graph Rewriting

◼ Temporal network 
dynamics 
represented by 
extraction and 
replacement of 
(labeled) subgraphs
— Partly based on 

“Generative 
Network Automata”
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Math. with Appl., 65(10), 1645-1664.



Modeling the Dynamics of 
Subgraph Densities

◼ Each rewriting “rule” removes subgraphs  
on the LHS and adds subgraphs on the 
RHS

—Subgraph rewriting events can be converted 
to a dynamical model of density changes of 
the involved subgraphs (and beyond)
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Assumptions

◼ Temporal network data are given in the 
form of a discrete-time sequence of 
(labeled) network configurations

◼ Correspondences of node identities are 
given between every consecutive pair of 
network configurations
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Testing with Synthetic Data: 
ZKC Evolution Model 
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Prototype Implementation in 
Python/NetworkX
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Step 1: Sampling Subgraph 
Rewritings
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Checking Convergence of 
Sampling
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Step 2: Representing Subgraph 
Rewriting Probability Density
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* In this pilot study, the probability distributions were represented non-
parametrically with the collected frequency data themselves 



Step 3: 
Construct-

ing 
Dynamical 
Equations
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dxi /dt = 

    ∑s ∑r xs PR(r|s) *

       ( r.count(i) –    

         s.count(i) )

i, s, r: subgraph types 



Then You Get a Linear System 
Model!!
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Actual Subgraph Density 
Dynamics
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Predicted Subgraph Density 
Dynamics
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Comparison
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Summary

◼ Proposed a method to automatically 
derive mechanistic model equations of 
subgraph density dynamics from 
temporal network data

◼ Proof of concept with small synthetic data

◼ Algorithm and software still at initial 
development stage with inaccurate results
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Next Steps: So Many Things to Do!

◼ Addressing indirect (nonlinear) interactions 
among distant subgraphs and subgraphs 
with different sizes
— With moment closure?

◼ Making sampling faster by adaptive 
sampling methods

◼ Improving graph isomorphism accuracy
— Currently using only approximation

◼ Constructing smoother, parametric functions 
for rewriting probability distributions

◼ Testing with larger-scale real-world datasets
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Thank You

◼ Financial support:

— JSPS KAKENHI Grant # 
23H03414 

◼ Special thanks to 
contributors in earlier 
stages of this research:

— Thilo Gross, Jeffrey Schmidt, 
and others
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