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Abstract— Interconnecting power systems has a number of
advantages such as better electric power quality, increased reli-
ability of power supply, economies of scales through production
and reserve pooling and so forth. Simultaneously, it may jeopar-
dize the overall system stability with the emergence of so-called
inter-area oscillations, which are coherent oscillations involving
groups of rotating machines separated by large distances up
to thousands of kilometers. These often weakly damped modes
may have harmful consequences for grid operation, yet despite
decades of investigations, the mechanisms that generate them
are still poorly understood, and the existing theories are based
on assumptions that are not satisfied in real power grids
where such modes are observed. Here we construct a matrix
perturbation theory of large interconnected power systems that
clarifies the origin and the conditions for the emergence of inter-
area oscillations. We show that coherent inter-area oscillations
emerge from the zero-modes of a multi-area network Laplacian
matrix, which hybridize only weakly with other modes, even
under significant capacity of the inter-area tie-lines, i.e. even
when the standard assumption of area partitioning is not
satisfied. The general theory is illustrated on a two-area system,
and numerically applied to the well-connected PanTaGruEl
model of the synchronous grid of continental Europe.

I. INTRODUCTION

Recent decades have witnessed a tendency to interconnect
already large power transmission grids into larger and larger
systems. Such interconnection is beneficial as it generally
improves power quality, in particular voltage and frequency
stability, it guarantees the safe and reliable supply of electric
energy from the resulting diversification of power generation
and it enables production and reserve pooling which leads to
economies of scales [1], [2]. These advantages come how-
ever with negative side effects, perhaps the most important
one being inter-area oscillations [2], [3]. These long-range
modes have been observed in continental transmission grids,
where they manifest themselves as coherent oscillations of
geographically separated groups of generators against each
other [4], [5]. With the ever increasing penetration of new
renewables in power grids, and the associated reduction in
overall inertia, there is a risk that these modes will occur
more frequently. When present, these modes effectively
reduce line capacities, may damage rotating machines and,
when not sufficiently damped as is often the case, may even-
tually trigger cascading failures and induce blackouts [2],
[4]–[7]. It is therefore crucial to understand their origin, the
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conditions under which they occur and how to damp these
modes. Below we address the first of these pressing issues.

The literature on inter-area oscillations is vast and here
we mention only some typical works. A first direction of
research is essentially phenomenological, where numerical
modal analysis is used to investigate the damping of the
slow modes of the swing equations [2], [8], [9]. Another
approach has been to construct such modes starting from
network reduction algorithms into equivalent models [10],
aggregating entire areas into single nodes [11]–[15]. The pro-
cedure assumes a separation of time scales between the intra-
and inter-area dynamics, justifying a singular perturbation
approximation [11], [12]. Strictly speaking, this assumption
presupposes a partition of the network into areas with strong
intra-area couplings and weak inter-area connectivity. The
resulting mathematical conditions on the network structure
that need to be fulfilled are never satisfied in real power
networks, however. A rigorous understanding of inter-area
oscillations in realistic settings is therefore still lacking.

In contrast to earlier works on inter-area oscillations,
we start here from an a priori non-partitioned power net-
work. Applying one of the many existing aggregation algo-
rithms [10], [12], we model the network as a collection of
r well connected areas. The number r of areas is somewhat
arbitrary, however it needs to be sufficiently larger than the
number of inter-area oscillations one would like to construct.
We introduce a parameter ε ∈ [0,1] multiplying the capacity
of each tie-line between any two areas which allows us to
interpolate between disconnected areas when ε = 0 and the
original network when ε = 1. We apply matrix perturbation
theory to this model, which gives Taylor expansions in ε for
the eigenvalues and -vectors of the full network Laplacian
matrix as a function of those of the disconnected Laplacian.
We find that slow network modes corresponding to inter-
area oscillations originate from the hybridization of the
r zero-modes of the disconnected Laplacian. Our second,
main result is that, while matrix perturbation theory globally
breaks down at small values of ε corresponding to the
mathematical conditions justifying the standard singular per-
turbation approximation [11], [12], our theory nevertheless
remains locally justified upon restoration of the original
network, ε→ 1 for several of the slowest modes, which retain
their structure as the inter-area tie-line are restored with their
original capacity.

The manuscript is organized as follows. Section II intro-
duces our mathematical notations. Section III gives the power
network model we consider and its linearization around an
operational state. Section IV gives a brief overview of matrix
perturbation theory and gives eigenvalues and eigenvectors
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corrections. Of particular interest is the case of a matrix
with repeated, i.e. degenerate eigenvalues. Section V applies
matrix perturbation theory to inter-area oscillations. In par-
ticular it gives an upper bound on the inter-area connection
strength for the validity of perturbation theory, and discusses
avoided crossings that hamper the approximation. Section VI
illustrates the theory first on a simple two-area network, then
on a realistic model of the synchronous transmission grid of
continental Europe. Conclusions are given in Section VII.

II. MATHEMATICAL NOTATION AND DEFINITIONS

We consider a network with N nodes, which is subdivided
into r areas, each with ni, i = 1, . . .r nodes. We write column
vectors v ∈ Rn as bold lowercase letters and their transpose
(row) vectors as v>. Matrices M ∈Rn×q are written in bold
uppercase letters. Block diagonal matrices are written as
M = diag(M1,M2, . . .). The jth unit vector with one nonzero
component is denoted (ê j)i = δi j. The vector of zeros (ones)
of dimension n is denoted 0n (1n).

III. MODEL

The transient and small-signal dynamics of high voltage
AC power grids are commonly modeled by the swing
equations. They describe the dynamics of voltage angles
θi, assuming constant voltage amplitudes V0 over the whole
network. At very high voltage, it is convenient to use the
lossless line approximation which reads [1], [16]

miω̇i +diωi = pi−∑
j

Bi jV 2
0 sin(θi−θ j), i ∈Vg, (1a)

diωi = pi−∑
j

Bi jV 2
0 sin(θi−θ j), i ∈Vc. (1b)

These equations are written in a frame rotating at the rated
grid frequency of f = 50 or 60Hz. Each network node is
either a generator (i ∈ Vg) or a consumer (i ∈ Vc), with
inertia mi, damping, di, voltage angle θi, frequency ωi = θ̇i
and an active power, pi > 0 for generators and pi < 0 for
consumers. In (1b), consumers are modeled as frequency-
dependent loads [16]. The nodes i and j are connected by a
power line with susceptance Bi j.

Given the active power vector p(0), the operational state
θ (0)θ (0)
θ (0) is the stationary solution to (1) satisfying, for each
component of p(0),

p(0)i = ∑
j

Bi j V 2
0 sin(θ (0)

i −θ
(0)
j ) . (2)

For a small signal perturbation p(0)→ p(0)+δ pδ pδ p, angle and
frequency dynamics are governed by the linearized swing
equations

Mω̇ωω +Dωωω = δ pδ pδ p−Lδθδθδθ , (3)

where M = diag(mi) [mi = 0 for consumers], D = diag(di),
δθδθδθ = θθθ −θ (0)θ (0)

θ (0), ωωω = δ θ̇δ θ̇δ θ̇ , and

Li j =

{
−Bi j V 2

0 cos(θ (0)
i −θ

(0)
j ) for i 6= j

∑k Bik V 2
0 cos(θ (0)

i −θ
(0)
k ) for i = j ,

(4)

is the weighted network Laplacian matrix. When the network
is singly-connected, it is positive semidefinite with one zero

eigenvalue, λ1 = 0, corresponding to the eigenvector u1 =
(1,1, . . . ,1)>/

√
N. When the network consists of r discon-

nected areas, the Laplacian matrix has r zero eigenvalues,
each of which corresponding to an eigenvector with constant
components within an area. Following the standard physics
denomination, we call such eigenvectors “zero-modes”.

IV. MATRIX PERTURBATION THEORY

Matrix perturbation theory addresses the question “can
we express the eigenvalues and -vectors of a matrix, from
the known eigenvalues and -vectors of a slightly different
matrix” The answer is yes. As long as the difference between
the two matrices is not too large, the eigenvalues and -vectors
of the “perturbed” matrix are expressed in a controlled
series expansion in the eigenvalues and -vectors of the
“unperturbed” matrix. The method is well-known and widely
used in physics, and it has recently been applied to problems
in electric power systems [17]–[20]. Situations where the
unperturbed matrix has a non-degenerate spectrum (where
all its eigenvalues are distinct) must be treated differently
from cases with a degenerate spectrum (where some of the
eigenvalues are repeated). For the sake of completeness we
present a short introduction to matrix perturbation theory
following [21].

A. Non-Degenerate Case

Consider that the Laplacian matrix L is

L = L0 + εLI , (5)

where ε ∈ [0,1] scales the strength of the perturbation. We
call L0 the unperturbed Laplacian and εLI the perturbation.
One wants to give a controlled approximation to the full
eigenvalue problem

(L0 + εLI)uα = λα uα . (6)

from the known eigenvalues and -vectors (λ (0)
α ,u(0)

α ) of the
unperturbed problem, ε = 0. The trick is to expand uα and
λα as

uα = u(0)
α + εu(1)

α + ε
2u(2)

α + . . . , (7a)

λα = λ
(0)
α + ελ

(1)
α + ε

2
λ
(2)
α + . . . . (7b)

The coefficients in these expansions can be obtained order by
order [20], [21], and in this paper we will restrict ourselves
to the first order corrections to the eigenvectors

u(1)
α = ∑

β 6=α

u(0)>

β
LI u(0)

α

λ
(0)
α −λ

(0)
β

u(0)
β

(8)

and the first and second order corrections to the eigenvalues

λ
(1)
α = u(0)>

α LIu
(0)
α , (9a)

λ
(2)
α = ∑

c

∣∣∣u(0)>
α LIu

(0)
β

∣∣∣2
λ
(0)
α −λ

(0)
β

. (9b)



Higher-order terms have similar, though more complicated
structures and we do not discuss them here. Suffice it to
mention that, from (8) and (9b), the convergence of the
perturbation expansions (7) for all α’s requires that∣∣∣λ (0)

α −λ
(0)
β

∣∣∣� ε

∣∣∣u(0)>

β
LIu

(0)
α

∣∣∣ , ∀α,β . (10)

Below we show that this condition is equivalent to the
standard condition for the validity of singular perturbation
theory [12], [22]. One of our main findings will be however
that matrix perturbation theory breaks down later for slow
modes with small λ

(0)
α , so that several inter-area modes can

be constructed for larger ε → 1 in large, well-connected
networks.

B. Degenerate Case

Clearly, (8) and (9b) exhibit divergences if two (or more)
eigenvalues are equal. Therefore matrix perturbation theory
treats the degenerate case differently.

One considers separately each degenerate subspace La =

span({u(0)
α } : L0u(0)

α = λ
(0)
α u(0)

α ,λ
(0)
α = λa) corresponding to

each multiply-repeated eigenvalue λa of L0. The set {u(0)
α }

of ra degenerate eigenvectors gives an orthonormal basis of
La, so that approximate eigenvectors of L0+εLI within La
are given by linear combinations of these eigenvectors, with
coefficients given by the column of the orthogonal matrix O
diagonalizing the projection Va of LI onto La,

Va = O>diag(λα
(1))O . (11)

Here the ra× ra matrix V has elements

(Va)α,β = u(0)>
α LIu

(0)
β

. (12)

From (11), the first order corrections to each degenerate
eigenvalue λ

(0)
α = λa are given by ελ

(1)
α , with the eigenvalues

λ
(1)
α of the reduced interaction matrix Va. The eigenvectors

of the latter also determine the relevant linear combination
of degenerate eigenvectors in La. As long as ε is sufficiently
small, these give the dominant corrections to the degenerate
part of the spectrum of L0.

Once λ
(0)
α + ελ

(1)
α approaches the part of the spectrum

outside La, second order corrections are no longer negligi-
ble. They are given by (9b) with the sum over β being over
eigenvalues and -vectors outside of La.

V. FROM ZERO-MODES TO INTER-AREA OSCILLATIONS

We next apply matrix perturbation theory to construct the
slow modes of a large, well-connected Laplacian matrix L,
corresponding to inter-area oscillations in the power grid
modeled by L. The first step is to subdivide the system into
r areas using one of the existing algorithms to do so [10],
[12]. Unless the considered grid is originally partitioned into
weakly connected areas, this subdivision is arbitrary and a
priori not justified, but we will see how it enables to construct
slow modes of L when r is chosen appropriately. We write

L = L0 +LI , (13)

with
L0 = diag

(
L(1)

0 , . . . ,L(r)
0

)
, (14)

where L(i)
0 denotes the internal Laplacian of the ith area. To

apply matrix perturbation theory, we consider (5) instead of
(13), keeping in mind that in the end, we need to take the
limit ε → 1.

The unperturbed Laplacian L0 has r zero eigenvalues.
The corresponding eigenvectors have constant components
in each area and can be any linear combination of the area
zero-modes

vi =
1
√

ni
(0, . . . ,0,1ni ,0, . . . ,0)

> , i = 1, . . .r . (15)

The perturbation LI is also Laplacian and contains the inter-
area connections. Increasing ε in (5) changes the network
from a disconnected one into the original, fully connected
network. We apply degenerate perturbation theory to the
zero-modes. We will see that slow, inter-area modes arise
from the hybridization of some of the area zero-modes in
(15).

Our first step is to write L in a basis that diagonalizes L0,

U>LU = U>(L0 + εLI)U = L̃0 + εL̃I , (16)

by means of the N×N matrix

U = (u(0)
1 , . . . ,u(0)

N ), (17)

whose columns contain the components of the eigenvectors
of L0. Because the latter has r degenerate zero-modes, the
r first columns of U can be chosen as arbitrary linear
combinations of the area zero-modes in (15). We chose the
combination that diagonalizes LI in the degenerate subspace
L0, LIu

(0)
α = λ

(1)
α u(0)

α , α = 1,2, . . .r. It is straightforward to
see then that

L̃0 = diag
(

U>(L0 + εLI)U
)
, (18)

L̃I = U>LI U−diag
(

U>LI U
)
. (19)

Spectral corrections up to the first order in ε are contained
in L̃0 while higher-order corrections come from εL̃I .

We consider L̃0 as the unperturbed matrix and εL̃I as the
perturbation matrix. Because L̃0 is diagonal in the basis we
use, the unperturbed eigenvectors have components ũ(0)

α, j =
δα j. From (9a) and (9b) it directly follows that the first order
corrections to the eigenvalues are zero, because we already
included them in our definition of L̃0, and that the second
order corrections read

λ
(2)
α = ∑

β 6=α

∣∣∣u(0)>
α LIu

(0)
β

∣∣∣2
(L̃0)αα − (L̃0)ββ

. (20)

The correction to the zero-modes is given by (20) where α

is one of the zero modes, β is one of the non-zero modes.
In that case, the denominator may be written as

(L̃0)αα − (L̃0)ββ =−λ
(0)
β

+ ε
(
u(0)>

α LIu
(0)
α −u(0)

β

>
LIu

(0)
β

)
.

(21)



This defines a critical value of ε below which there will be
no divergence to any order in perturbation theory for the
zero-mode α ,

εc,α = min
α,εc≥0

 λ
(0)
β

u(0)>
α LIu

(0)
α −u(0)>

β
LIu

(0)
β

 , (22)

because for ε < εc,α , there is no vanishing denominator in
the perturbation expansion for λα . Here minα,εc≥0 denotes
the minimum over all β that satisfy ε ≥ 0. The criterion
ε < εc,α is based on the distance between the zero-modes
and nearby non-zero-modes and the slope of their variation
with ε to leading order in perturbation theory. When the slope
difference is small and the distance is large, our perturbative
construction of zero-modes may remain justified beyond ε >
1, for areas connected even more strongly than in the real
network. Below we will see that this is the case for several
modes in well connected, large networks.

Two important remarks are in order here before we ap-
ply our theory to power grid models. First, electric power
grids are complex networks with no particular symmetry.
Because of the absence of symmetries there are generically
no degeneracies, except those of the zero-modes which are
due to the Laplacian nature of the network coupling in each
area. Second, upon increasing ε from zero, eigenvalues of
L = L0 + εLI move, first quasi-linearly up or down with
ε - corresponding to the first-order corrections (9a) - before
higher-order corrections kick in. The latter have an important
consequence that, unless some symmetries are at work,
eigenvalues may come very close to one another but they
eventually repel each other and do not cross [23]. It is in
the immediate vicinity of the resulting avoided crossings
that eigenvectors exchange their structure. Conversely, eigen-
vectors corresponding to eigenvalues that do not undergo
any avoided crossing as ε is varied do not change their
structure by much. The threshold value εc,α given in (22)
gives a parametric estimate for the first location of an avoided
crossing involving the α th zero-mode. Below we show that
low-lying zero-modes are not subjected to avoided crossings,
protected as they are from the rest of the spectrum by higher-
lying zero-modes.

VI. INTER-AREA OSCILLATIONS IN POWER GRID
MODELS

A. Two-area Network

We start by applying matrix perturbation theory to a simple
two-area network. The areas have n1 and n2 nodes respec-
tively, and the unperturbed Laplacian is L0 = diag(L(1)

0 ,L(2)
0 ).

It has two zero eigenvalues, corresponding to the area zero-
modes, i.e. instead of (15) one has

v1 = (1n1 ,0n2)
>/
√

n1, v2 = (0n1 ,1n2)
>/
√

n2. (23)

The inter-area connections are captured by the interaction
Laplacian LI . The reduced interaction matrix V is then given
by

V = A
(

1/n1 −1/
√

n1n2
−1/
√

n1n2 1/n2

)
, (24)

where A = tr(LI)/2 is the sum of the capacities of the inter-
area tie-lines. The eigenvalues of V are

λ1 = 0, λ2 = A
(

n1 +n2

n1n2

)
. (25)

The appropriate linear combination of the area zero-mode is

u(0)
1 =

√
n1

n1 +n2
v1 +

√
n2

n1 +n2
v2 = 1n1+n2/

√
n1 +n2

(26)

u(0)
2 =

√
n2

n1 +n2
v1−

√
n1

n1 +n2
v2. (27)

These eigenvectors are the constant Laplacian mode and
the well-known Fiedler mode [24]. It can be shown that
the constant mode remains unchanged at every order of
perturbation theory, because LI is Laplacian, however the
second mode will in general change with ε .

In this simple two-area case, the analytic threshold (10)
for the validity of the theory can be estimated by using the
known bound on the smallest non-zero eigenvalue in each
area λ

(i)
2 < 4χi/(niDi), where χi = minl,m |(L

(i)
0 )lm| and Di

denotes the diameter of area i [25]. We then find the threshold
value for the inter-area connections

A <

(
n1n2

n1 +n2

)
4min

i

(
χi

niDi

)
. (28)

This means for global convergence the areas should show
strong intra-area connections and weak inter-area connec-
tions, in agreement with the standard criteria of [12].

B. East-West Oscillations in the European Grid

We perform our main numerical investigations on the
PanTaGruEl model of the synchronous grid of continental
Europe. The model is described in [26], [27]. It consists
of 3809 buses, 468 of which are generators, connected by
4944 power lines. We first aggregate the model into seven
areas using the algorithm of [12], [22], and verify that
all areas are connected. In the top panel of Fig. 1 the
hybridization of the zero-modes and the evolution of some of
the lowest non-degenerate eigenvalues is shown as a function
of ε ∈ [0.0,0.25], for a partition of seven areas. There are
already several avoided crossings at small ε , indicating the
overall breakdown of matrix perturbation theory, however
these avoided crossing occur rather high in the spectrum and
do not affect the lowest-lying zero-modes. This is confirmed
by the mode-dependent threshold (22) which is εc,α > 1 for
α = 2 (the orange mode). Other modes have lower values,
going down to εc,α ≈ 0.03 for α = 7 (the pink mode) which
indeed undergoes an avoiding crossing with higher-lying
non-degenerate modes at ε . 0.18.

The hybridization of the zero-modes can be quantified via
the scalar product

η = u>α (ε = 0) ·uα(ε) , (29)

between an unperturbed mode at ε = 0 and its vector at
ε 6= 0. The bottom panel of Fig. 1 shows that the low-lying
zero-mode essentially keep their unperturbed structure, with



Fig. 1. Top panels: Evolution of the eigenvalues of the Laplacian of (5)
and (14) with r = 7 area partitioning of the PanTaGruEl model of the
synchronous grid of continental Europe. Zero-modes giving rise to inter-
area oscillations are shown in color and some of the lowest non-degenerate
modes in gray. The circles mark three illustrative avoided crossings. The
three right panels make it clear that levels avoid crossing each other, because
of the lack of specific symmetry in the system. Bottom panel: evolution of
the scalar product η = u>α (ε = 0) ·uα (ε) between hybridized zero-modes at
ε = 0 and ε . The avoided crossing at around ε = 0.2 between the seventh
(pink) mode and the first non-degenerate (grey) leads to an abrupt drop in
η for the pink mode. Almost simultaneously, there is an avoided crossing
between the fourth (red) and fifth (purple) eigenvalue giving a noticeable
drop in η for both modes. The first three modes barely change their structure
all the way up to ε = 1.

η & 0.95 all the way to the fully connected network limit ε→
1. Accordingly, the degenerate matrix perturbation theory
presented above predicts the structure of the corresponding
eigenvectors very well. These modes correspond to east-west
inter-area oscillations [28].

We have observed, and will discuss in a follow-up paper
that increasing the number r of areas improves the precision
with which the lowest eigenvalues and -vectors are predicted.
Simultaneously, this increases the number of fast growing,
initially degenerate eigenvalues, which accordingly meet the
non-degenerate eigenvalues at lower values of ε . Because
they cannot cross them, however, they undergo avoided
crossings which pushes back the initially non-degenerate
part of the spectrum. Qualitatively, this leads to a better
protection of the low-lying eigenvalues which hybridize very
little. This is further illustrated in Fig. 2 which shows that

the Fiedler, α = 2 mode keeps the same structure from the
weakly coupled limit at ε = 0.1 to the fully coupled limit
at ε = 1. To show that these modes are indeed coupled to

Fig. 2. Structure of the Fiedler mode of the Laplacian of the PanTaGruEl
model of the synchronous grid of continental Europe in the weakly (top
panel) and fully (bottom) connected cases. The color corresponds to the
value of the eigenvector u2,i of the corresponding node i. The mode structure
is essentially the same for ε = 0.1 as for ε = 1. This mode corresponds to
east-west inter-area oscillations.

inter-area oscillations in the grid we finally investigate abrupt
900 MW power generation faults in Portugal and in Greece.
The results are shown in Fig. 3. It is seen that following
such a fault, the opposite area oscillates coherently, with all
nodes oscillating at the same phase and frequency, before
synchronizing at a smaller frequency value.

VII. CONCLUSIONS

We have constructed a matrix perturbation theory of slow
coherent, inter-area oscillations. We have shown that inter-
area oscillations emerge from the weak hybridization of
some of the zero modes of coherent areas. The hybridization
means that areas, even located far away from each other, are
connected through a mode that is largely constant on each
area. When such modes are excited, the corresponding areas
oscillate coherently against each other. We finally stress that
the singular perturbation theory of [12], [22] is absolutely
not justified here, because the required small parameters have



Fig. 3. Time-evolution of frequencies following a 900 MW fault in Portugal
(middle panel) or Greece (lower panel). The fault locations are marked by
the two black crosses in the top panel. The response of all nodes in the area
opposite to the fault, as well as on one node in the faulted area (red crosses
in the top panel) are shown in the middle and lower panels.

values d = 140 and δ = 37, much larger than one. Work in
progress investigates damping of inter-area oscillations and
location of fault that might trigger them.
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[9] E. Grebe, J. Kabouris, S. López Barba, W. Sattinger, and W. Winter,
“Low frequency oscillations in the interconnected system of continen-
tal europe,” in IEEE PES General Meeting, 2010, pp. 1–7.

[10] X. Cheng and J. Scherpen, “Model reduction methods for complex
network systems,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, no. 1, p. null, 2021. [Online]. Available:
https://doi.org/10.1146/annurev-control-061820-083817

[11] P. V. Kokotovic, R. E. O’Malley Jr, and P. Sannuti, “Singular perturba-
tions and order reduction in control theory—an overview,” Automatica,
vol. 12, no. 2, pp. 123–132, 1976.

[12] J. H. Chow, Ed., Time-Scale Modeling of Dynamic Networks with Ap-
plications to Power Systems. Berlin Heidelberg, Germany: Springer-
Verlag, 1982.

[13] J. H. Chow, J. Cullum, and R. A. Willoughby, “A Sparsity-Based
Technique for Identifying Slow-Coherent Areas in Large Power Sys-
tems,” IEEE Transactions on Power Apparatus and Systems, vol. 103,
pp. 463–473, 1984.
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