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Abstract
Coupled dynamical systems are omnipresent in everyday life. In general, interactions between
individual elements composing the system are captured by complex networks. The latter
greatly impact the way coupled systems are functioning and evolving in time. An important
task in such a context, is to identify the most fragile components of a system in a fast and
ef�cient manner. It is also highly desirable to have bounds on the amplitude and duration
of perturbations that could potentially drive the system through a transition from one equi-
librium to another. A paradigmatic model of coupled dynamical system is that of oscillatory
networks. In these systems, a phenomenon known as synchronization where the individual
elements start to behave coherently may occur if couplings are strong enough. We propose
frameworks to assess vulnerabilities of such synchronous states to external perturbations. We
consider transient excursions for both small-signal response and larger perturbations that can
potentially drive the system out of its initial basin of attraction.
In the �rst part of this thesis, we investigate the robustness of complex network-coupled
oscillators. We consider transient excursions following external perturbations. For ensemble
averaged perturbations, quite remarkably we �nd that robustness of a network is given by
a family of network descriptors that we called generalized Kirchhoff indices and which are
de�ned from extensions of the resistance distance to arbitrary powers of the Laplacian matrix
of the system. These indices allow an ef�cient and accurate assessment of the overall vulnera-
bility of an oscillatory network and can be used to compare robustness of different networks.
Moreover, a network can be made more robust by minimizing its Kirchhoff indices. Then for
speci�c local perturbations, we show that local vulnerabilities are captured by generalized
resistance centralities also de�ned from extensions of the resistance distance. Most fragile
nodes are therefore identi�ed as the least central according to resistance centralities. Based on
the latter, rankings of the nodes from most to least vulnerable can be established. In summary,
we �nd that both local vulnerabilities and global robustness are accurately evaluated with
resistance centralities and Kirchhoff indices. Moreover, the framework that we de�ne is rather
general and may be useful to analyze other coupled dynamical systems.
In the second part, we focus on the effect of larger perturbations that eventually lead the sys-
tem to an escape from its initial basin of attraction. We consider coupled oscillators subjected
to noise with various amplitudes and correlation in time. To predict desynchronization and
transitions between synchronous states, we propose a simple heuristic criterion based on the
distance between the initial stable �xed point and the closest saddle point. Surprisingly, we
�nd numerically that our criterion leads to rather accurate estimates for the survival proba-
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bility and �rst escape time. Our criterion is general and may be applied to other dynamical
systems.
Keywords: coupled dynamical systems, complex networks, centralities, indices, robustness,
vulnerability, key players problem, coupled oscillators, synchronization, transient dynamics,
linear response theory, escape of the basin of attraction.
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RØsumØ
Les systŁmes dynamiques couplØs sur des rØseaux complexes sont omniprØsents dans la vie de
tous les jours. En gØnØral, les interactions entre les ØlØments individuels composant le systŁme
sont modØlisØes par de rØseaux complexes. Ces derniers ont un impact important sur la façon
de fonctionner et l’Øvolution temporelle des systŁmes couplØs. Dans ce contexte, une question
importante est comment peut-on identi�er la composante la plus fragile d’un systŁme d’une
maniŁre ef�cace et rapide. Il est aussi souhaitable d’avoir des bornes sur l’amplitude et la
durØe de perturbations qui pourraient Øventuellement conduire le systŁme à une transition
d’un Øquilibre à un autre. Un modŁle emblØmatique de systŁme dynamique couplØ est celui
des rØseaux oscillants. Dans ces systŁmes, il existe un phØnomŁne appelØ synchronisation
oø les ØlØments individuels commencent à Øvoluer de maniŁre cohØrente si les couplages
sont suf�samment forts. Nous proposons des mØthodes pour Øvaluer les vulnØrabilitØs de
tels Øtats synchrones face à des perturbations externes. Nous considØrons le transient induit
par des perturbations faibles mais aussi des perturbations plus importantes qui peuvent
potentiellement amener le systŁme en-dehors de son bassin d’attraction initial.
Dans la premiŁre partie de cette thŁse, nous investiguons la robustesse d’oscillateurs couplØs
sur des rØseaux complexes. Nous considØrons le transient suivant des perturabtions externes.
Pour des perturbations moyennØes sur des ensembles, nous trouvons de maniŁre remarquable
que la robustesse d’un rØseau est dØcrite par une famille d’indices de rØseaux que nous
appelons indices de Kirchhoff gØnØralisØs et qui sont obtenus à partir d’extensions de la distance
rØsistive aux puissances de la matrice Laplacienne du systŁme. Ces indices permettent une
Øvaluation ef�cace et prØcise de la vulnØrabilitØ globale d’un rØseau d’oscillateurs et peuvent
Œtre utilisØs pour comparer la robustesse de diffØrents rØseaux. De plus, un rØseau peut
Œtre rendu plus robuste en minimisant ses indices de Kirchhoff gØnØralisØs. Ensuite pour des
perturbations spØci�ques locales, nous montrons que les vulnØrabilitØs locales sont expliquØes
par des centralitØs rØsistives gØnØralisØes aussi dØ�nies à partir d’extensions de la distance
rØsistive. Les noeuds les plus fragiles sont par consØquent identi�Øs comme les moins centraux
par rapport aux centralitØs rØsistives. En utilisant ces derniŁres, des classements des noeuds
du plus au moins vulnØrables peuvent Œtre Øtablis. En rØsumØ, nous trouvons qu’à la fois les
vulnØrabilitØs locales et la robustesse globale sont prØcisØment ØvaluØes à l’aide des centralitØs
rØsistives et des indices de Kirchhoff. Les mØthodes que nous proposons sont gØnØrales et
peuvent donc Œtre utiles pour l’analyse d’autres systŁmes dynamiques couplØs.
Dans la deuxiŁme partie, nous nous concentrons sur l’effet de perturbations plus impor-
tantes qui mŁnent �nalement le systŁme à une sortie de son bassin d’attraction initial. Nous
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RØsumØ

considØrons des oscillateurs couplØs soumis à du bruit avec diffØrents amplitude et temps
de correlation. Pour prØdire la dØsynchronisation et les transitions entre Øtats synchrones,
nous proposons un critŁre heuristique simple basØ sur la distance entre le point �xe stable
initial et le point de selle le plus proche. Étonnamment, nous trouvons numØriquement que
notre critŁre permet des Øvaluations prØcises de la probabilitØ de survie ainsi que du temps de
premiŁre sortie. Notre critŁre est formulØ de maniŁre gØnØrale et peut donc Œtre appliquØ à
d’autres systŁmes dynamiques.
Mots clØs : systŁmes dynamiques couplØs, rØseaux complexes, centralitØs, indices, robustesse,
vulnØrabilitØ, problŁme des key players, oscillateurs couplØs, synchronisation, dynamique du
transient, thØorie de la rØponse linØaire, sortie du bassin d’attraction.
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General Introduction

Coupled dynamical systems are widely used to model natural and man-made sytems. Such
realizations range from the prey-predator interaction of different species evolving in the
same environment [58, 65], �re�ies �ashing together in unison [43] or individuals exchanging
opinion on social networks [32], to quantum phase dynamics of superconducting islands
connected by Josephson junctions [127, 64], interacting molecules leading to preferential
proteins folding [15] and voltage phase dynamics of electrical power grids [13]. All theses
systems are made of individual elements with their own internal dynamics. The coupling
between individual units is described by a network that may be regular or complex in structure,
temporal or static during the interactions. Even for individual dynamics that are rather simple
taken independently, various rich collective behaviors emerge from the coupling network’s
geometry and topology.

In this context, there is an ubiquitous phenomenon where every elements start to behave
coherently known as synchronization [77]. Such collective motion occurs for example in elec-
trical grids when all synchronous machines rotate at the same frequency [76] or in Josephson
junctions arrays where quantum phases of each superconducting island synchronize with
some permanent Josephson currents circulating between them [127]. Stability as well as
transient dynamics of synchrony within noisy environment, faults or perturbations in the
internal parameters greatly depend on the interaction network, namely how strong and how
structured is the coupling. This is still true in opinion formation on social networks [97] or
vehicular platoons [96, 54] moving along together for which similar collective behavior known
as consensus may occur.

Robustness of synchronous states can be investigated from various perspectives. One could
evaluate the size of their basin of attraction [128, 35] to estimate the range of initial condi-
tions that lead to synchronous states, or assess �rst escape time and transitions between
synchronous states due to noisy environment [38, 107, 108, 60, 122, 62]. From another point
of view, one could consider transient dynamics induced by perturbations in the internal
parameters of individual elements close to an initial stationary state [7, 54, 102, 93, 110] or
changes in the structure of the coupling network [27, 30, 113, 29, 37]. All the above stability
features are greatly impacted not only by the internal parameters of each individual elements
but also by the way the latter interact with each other. For example, the same perturbation
applied on two individual elements having very different connectivities or centralities will
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Figure 1 � Illustration of a complex network. The blue node is the most connected while the
red one can potentially separate the network into two pieces if removed.

most probably lead to severally distinct responses of the overall coupled system.

In general, analyses shedding light on the interplay between coupled dynamics and network
structure are highly desirable. Most of time it is a hard problem that leads to highly non
trivial dependencies on the coupling network. Over the last decades, complex networks
have witnessed an increasing interest. They have been investigated as dynamical systems
on their own for example with preferential attachment algorithms [25] or as static objects.
In that latter case, a question that has attracted much attention is that of the key players
problem [5, 19, 112, 88]. These key players may be elements of the network which, once
removed, lead to the biggest changes in the network according to some speci�c features. For
example, in the network shown in Fig. 1, if one is interested in separating the network into two
independent pieces, then the red node should be removed and is thus the key player. But if one
wants to remove the most connected element, then the blue one is the key player. To identify
such nodes, graph theoretic centralities have been de�ned mostly based solely on the network
structure or considering random processes [16]. However, coupled dynamical systems are not
random processes but deterministic systems satisfying physical conservation laws. For such
systems, key players may be elements that, once removed, impact the stability at most, or once
perturbed, drive the system through the largest transient excursion from its stationary state.
That latter case is illustrated in Fig. 2, where Kuramoto oscillators [see Eq. (1.18)] coupled
on the complex network shown in inset are taken at a stationary state. Then one applies the
same perturbation on two different oscillators (red nodes). Even if both oscillators have the
same number of neighbors, i.e. same degree, the responses of the system are quite different.
In bottom panel, oscillators’ angles spread more and need more time to return to the initial
stationary state after the perturbation compared to top panel. It is an appealing avenue to
try to predict such distinct responses using formerly de�ned centralities. But how to choose
the correct one? Obviously one could try to relate numerically graph theoretic metrics to
dynamical responses. However following this procedure and assuming it succeeds, one does
not have any insights about the intrinsic connections between the considered metric and the
dynamical system. One may therefore miss some dependencies especially on the dynamical
parameters of the system [19, 16, 63].
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Figure 2 � Comparison between oscillators’ response following a perturbation in the natural
frequency of oscillators highlighted in red (with corresponding trajectories in red) that starts
at 0 and ends at dashed lines. Both nodes in red have the same degree, however the responses
are very different.

Indeed, the two very different behaviors shown in Fig. 2 may be non trivial functions of the local
connectivities of the perturbed elements, of the global structure of the coupling network and
of the spatial distributions of the dynamical parameters of the oscillators. Some effects of the
dynamical parameters are illustrated in Fig. 3 where the time-evolution of the winding number
q is recorded for oscillators subjected to noise and coupled on a cyclic network. Different
values of q correspond to different synchronous state. One clearly sees that �rst escape time
and the frequency of transitions between �xed points are functions of the correlation time of
the noise and the dynamical parameters of the oscillators, namely in this case their inertia
(see caption of Fig. 3).

It is thus often a complicated task to connect analytically dynamics of coupled systems to intu-
itive features of the coupling network. Related questions about the interplay between complex
networks and coupled dynamical systems have attracted an increasing interest over the last
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Figure 3 � Time-evolution of the winding number q of coupled oscillators on a cyclic network
subject to noise in their internal parameters, namely their natural frequencies. Different
values of q indicate different stable �xed points. Solid red lines correspond to inertialess
oscillators while dashed blue lines correspond to oscillators with inertia. From panel (a) to (b),
the correlation time ¿0 of the noise is increased.

decades that paved the way to some well-known results. Among them for example the relation
between epidemic threshold and degree distribution [95], diffusion on complex networks and
communicability [44] and synchronizability of oscillators and small-worldness [10].

Research Objectives

As presented in the introduction, coupled dynamical systems on complex network impact
various �elds of research. For most of them, a rather simple and central question is how robust
are such systems to external perturbations. In particular, this is a relevant question for complex
oscillatory networks. These coupled systems are characterized by synchronous states where
every elements evolve coherently at the same frequency. Many results on coupled oscillators
focused on the synchronizability of different network topologies and the range of initial condi-
tions or internal parameters allowing such synchronization. Properties of synchrony can be
investigated from various angles. For example, synchronization can be optimal from its linear
stability [99], the range of oscillators parameters that allows synchronization [10, 26, 132],
the size of the basin of attraction around stable �xed points [128, 35], desynchronization
and transitions between synchronous states that may occur due to noise [38, 60, 107] or how
disturbances spread accross the network [69, 129]. Here we propose to investigate robustness
from the reaction of the system to external perturbations. As illustrated in Fig. 2, the response
of coupled oscillators obviously depends on which element is attacked. However the different
behaviors observed in Fig. 2 seem non trivially intricate with the network structure as simple
local properties like the degree fails to predict such distinct responses. Moreover, inhomo-
geneities in the internal parameters of individual elements may also play a role and affect
the system’s response. In this context, a central task is to determine the implications of each
system’s component in the �nal response. In particular, two questions of prime importance
arise: (i) how to identify the most vulnerable components of a coupled system and (ii) how the
overall stability of the system relates to the structure of the coupling network. Answers to these
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questions may have many potential applications. For example, in an electrical power network,
which edge should be added to improve the global robustness of the synchronous states or in
a social network which agent has the greatest in�uence on the general opinion. The resulting
network description should provide an ef�cient and intuitive framework to understand how
an initial input perturbation is related to an output response.

Main Contributions

We �rst considered small-signal response of complex network-coupled oscillators. More
precisely, we investigated transient regimes following perturbations that leave the dynamics
close to the initial stable �xed point. Quite surprisingly, we found that the global robustness
is captured by a family of new network indices which we called generalized Kirchhoff indices
Kfp . They provide an accurate and ef�cient assessment of the robustness of synchronous
networks against ensemble averaged perturbations. Moreover they are easily obtained from
the eigenvalues of the Laplacian of the coupling network weighted by angles differences at the
initial �xed point. Interestingly generalized Kirchhoff indices can be interpreted as the sum of
all generalized resistance distances ›(p)

i j in the network as,

Kfp ˘
X

i˙ j
›(p)

i j . (1)

Resistance distances ›(p)
i j are complex network distances. In particular for p ˘ 1, one recovers

the resistance distance originally de�ned in Ref. [71]. Then ›(1)
i j has an intuitive meaning. It

corresponds to the effective resistance between node i and j in a new network where one puts
a resistor on each edge with resistance given by the inverse of the edge weight in the original
network. Therefore resistance distance account for all existing path between two nodes.
Interestingly, we found that, to improve the global robustness of coupled oscillators, one
should minimize resistance distances, and thus minimize generalized Kirchhoff indices Eq. (1).
The latter are non trivial functions of the coupling network and allow an accurate evaluation
of network robustness as shown in Fig. 4 where Kf1 and Kf2 are calculated for cyclic networks
with nearest and q th- neighbors coupling. For example, even if networks with q ˘ 17 and
q ˘ 18 may look similar, their Kirchhoff indices and thus their robustness are quite different.
In summary, robustness of different networks can be compared through their set of Kirchoff
indices. Then we found that local vulnerabilities are directly connected to combinations of
Kfp ’s and new centralities that we called generalized resistance centralities, Cp (i ). The latter
are straightforwardly de�ned as closeness centralities from resistance distances as,

Cp (i ) ˘

"

n¡1 X

j
›(p)

i j

#¡1

. (2)

Quite remarkably, most fragile nodes within a network are identi�ed as least central ones
according to resistance centralities. As an example, Fig. 5 shows resistance centralities C1(i )
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Figure 4 � Kf1 (green) and Kf2 (violet) for a cyclic graph with n ˘ 50 with nearest and q th-
neighbor coupling, ai ,i§1 ˘ ai ,i§q ˘ a0. The inset sketches the model for q ˘ 17, 18 and
illustrates one path involving q th-range interactions starting from node in red.

and C2(i ) for the network shown in insets of Fig. 2.

Figure 5 � Resistance centralities C1(i ) and C2(i ) de�ned in Eq. (2) . Nodes pointed with arrows
correspond to the perturbed nodes in Fig. 2.

One clearly sees that the node that induced that largest transient (bottom panel of Fig. 2)
has lowest centralities C1(i ) and C2(i ) compared to the other one (top panel of Fig. 2). These
centralities can also be used to build rankings of the nodes from most to least vulnerable, which
are particularly useful to analyze local vulnerabilities in large scale networks. Moreover, for
both global robustness and local vulnerabilities, we clari�ed the role of dynamical parameters,
showing that inertia only has a limited effect on system’s excursion from synchronous state.

Second we went beyond weak perturbations and investigated desynchronization and transi-
tions between synchronous states induced by larger perturbations as illustrated in Fig. 3. More
precisely, we considered coupled oscillators within noisy internal parameters. Rather sur-
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prisingly, based on a heuristic argument comparing standard deviations of oscillators’ angles
and the distance between the initial stable �xed point and the closest saddle point, we found
estimates of the survival probability and �rst escape time that satisfactorily �ts numerical
simulations. Moreover we found that, increasing oscillators’ inertia tend to facilitate escape
from the initial basin of attraction.

In both cases of weak and large perturbation, the frameworks that we de�ned are rather
general and thus may be used to analyze other types of coupled dynamical systems.

My research on vulnerabilities of coupled dynamical systems led to publications in peer-
reviewed journals and preprints listed below.

� M. Tyloo, T. Coletta, P. Jacquod, Robustness of Synchrony in Complex Networks and
Generalized Kirchhoff Indices, Physical Review Letters 120(8):084101 (2018). Chapter 2
in the present thesis.

� M. Tyloo, P. Jacquod, Global Robustness vs. Local Vulnerabilities in Complex Syn-
chronous Networks, Physical Review E 100(3):032303 (2019). Chapter 3

� M. Tyloo, L. Pagnier, P. Jacquod, The Key Player Problem in Complex Oscillator Networks
and Electric Power Grids: Resistance Centralities Identify Local Vulnerabilities, Science
Advances 5(11):eaaw8359 (2019). Chapter 4

� M. Tyloo, R. Delabays, P. Jacquod, Noise-Induced Desynchronization and Stochastic
Escape from Equilibrium in Complex Networks, Physical Review E 99(6):062213 (2019).
Chapter 5
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The forthcoming chapters are made from selected publications closely related to the question
of global robustness and local vulnerabilities in complex network-coupled systems.

In preliminary chapter 1 we give some technical details about notions then used in the
other chapters. Chapter 2 considers �rst-order oscillators and establish the relation between
global robustness and Kirchhoff indices. Chapter 3 investigates more deeply the trade-off
between local vulnerabilities and global robustness for second-order oscillators and the role of
dynamical parameters. Chapter 4 focuses on local vulnerabilities of second-order oscillators
and establish nodal rankings. Chapter 5 considers transitions between synchronous states
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induced by a noisy environment and gives an estimate of the survival probability as well as
�rst escape time. Finally chapter 6 gives a general conclusion and possible extensions of the
presented results.
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1 Preliminaries

In this preliminary chapter, we detail the mathematical tools used in the following chapters.
In the �rst section we discuss de�nition and some properties of complex networks. In the
second section we give a brief overview of coupled oscillators and related models. Finally in
the third section we give details about linear response theory and its range of validity.

A survey about complex networks

A complex network is a mathematical object, also called graph, that describes how some
individual units are connected together. More precisely it is made of a set of vertices1 V ˘
{1, ...,n} which is a collection of indices, and a set of edges E ‰ V£V. The number of nodes is
n ˘ jVj and the number of edges l ˘ jEj. Each edge e(i , j ) 2 E is de�ned by a source node i
and a target node j that are connected by e as well as a weight w(e). There are at least two
standard way to encode how the nodes are connected together by the edges and thus describe
complex networks. The �rst one is via the adjacency matrix A 2 Rn£n de�ned as,

ai j ˘

(
w(e) , if e(i , j ) 2 E,

0 , otherwise.
(1.1)

For undirected networks, the matrix elements of A satisfy ai j ˘ a j i . In the following, we
consider undirected networks and give details about directed networks in footnotes. The
second way to describe a network is via the incidence matrix B 2 Rn£l de�ned as,

bi e ˘

( p
w(e) , if node i is one end of edge e,

0 , otherwise.
(1.2)

1Also referred to as nodes.
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Chapter 1. Preliminaries

From the adjacency matrix, one obtains the degree diagonal matrix K as,2

ki j ˘

( Pn
k˘1 ai k , if i ˘ j ,
0 , otherwise.

(1.3)

Each element ki i is then the weighted number of edges that are connected to node i . Note
that the distribution of ki i can be useful to characterize the homogeneity/regularity of a
network. Finally, using A and K , one de�nes the Laplacian matrix as L ˘ K ¡ A, which reads
elementwise,

Li j ˘

(
¡ai j , if i 6˘ j ,

Pn
k˘1 ai k , if i ˘ j .

(1.4)

Note that for undirected networks with positive edge weights, the Laplacian is also expressible
as L ˘ B 0B 0T where B 0 is the oriented3 version of the incidence matrix Eq. (1.2). Many impor-
tant properties of complex networks can be deduced from the above de�ned matrices. Some
of them are brie�y discussed below. The Laplacian is the matrix de�ning the coupling of many
coupled dynamical systems in which we are interested. We thus give an extended description
of its properties.

Laplacian

Following its de�nition Eq. (1.4), the Laplacian sati�es
P

j Li j ˘ 0 8i and is thus a matrix of
rank n¡1. Moreover as L ˘ B 0B 0T , the eigenvalues of the Laplacian are real4 and satisfy 0 ˘ ‚1 •
‚2 • ... • ‚n . If the network is connected, by the vanishing row/column sum property of the
Laplacian, the eigenvector associated to ‚1 ˘ 0 is given by u1 ˘ (1,1, ...,1)/

p
n.5 Disconnected

networks can be identi�ed by counting the number of vanishing eigenvalues. For example, if a
network is made of two distinct disconnected subspaces of nodes V1,V2 ‰ V, one can always
separate the components of the eigenvectors accordingly and de�ne u1, u2 such that,

ufi,i ˘

(
1/

p
nfi , if i 2 Vfi,

0 , otherwise,
(1.5)

with nfi ˘ jVfij and fi ˘ 1,2. Then both u1 and u2 have associated eigenvalues that are van-
ishing, respectively ‚1 ˘ 0 and ‚2 ˘ 0. The same argument holds true for more than two
disconnected subspaces of nodes. Therefore, the number of independent connected compo-
nents of a network is given by the degeneracy of the vanishing eigenvalue.

In case of a connected network, by orthogonality, eigenvectors with non-vanishing eigenvalues

2For a directed network, one has for each node i n¡ and out¡ degrees de�ned as kout (i ) ˘
Pn

j ˘1 ai j and
ki n (i ) ˘

Pn
j ˘1 a j i .

3To get the oriented version we simply add a minus sign to one of the two non-vanishing matrix elements in
each column of incidence matrix Eq. (1.2).

4In case of a directed network, the eigenvalues might have an imaginary part.
5We also refer to this eigenvector as the constant vector.
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1.1. A survey about complex networks

satisfy the relation,
Pn

i˘1 ufi,i ˘ 0 8fi ‚ 2. The main outcome of these relations is that if L is
applied to a vector x 2 Rn , the component along the constant vector i.e. (u1 ¢ x)u1 has no effect
as Lu1 ˘ 0. Physically then, if the coupling of a dynamical system is given by a product of L
times a vector x 2 Rn of nodal degrees of freedom, it implies that its entire dynamics as well as
its steady states are invariant to constant shifts of x as,

Lx ˘ L (x ¯ c u1) , c 2 R . (1.6)

Therefore one may only consider components orthogonal to u1, namely xi ! xi ¡n¡1 Pn
j ˘1 x j .

The eigenvector u2 associated to the second smallest eigenvalue ‚2 is called the Fiedler mode of
the network [46]. The sign of its components gives a partition of the nodes into two connected
subgroups which minimizes the sum of weights of required edges to remove to separate
the network into two distinct pieces [114]. Because of the vanishing eigenvalue ‚1 ˘ 0, the
Laplacian matrix is not invertible. Nevertheless, one can still de�ne its pseudo inverse denoted
L� which reads,

L�
i j ˘

X

fi‚2

ufi,i ufi, j

‚fi
˘

£
(L¯ nuT

1 u1)¡1⁄
i j ¡

£
uT

1 u1
⁄

i j , (1.7)

where in the sum, the index corresponding to the vanishing eigenvalue has been omitted.

From a more intuitive perspective, the Laplacian of the network is often encountered in
coupled dynamical systems because it relates to differences between degrees of freedom
or properties of connected nodes. More precisely, if x 2 Rn is a vector of nodal degrees of
freedom/properties one has,

nX

j ˘1
Li j x j ˘ ¡

nX

j ˘1
ai j (xi ¡ x j ) , i ˘ 1, ...,n . (1.8)

Therefore, the i th component of Eq. (1.8) is simply the sum of the differences between xi

and its connected components x j weighted by adjacency matrix elements ai j . Such coupled
systems have gauge invariance with respect to constant shifts of x along u1 . Dynamics based
on the minimization/maximization of these differences is at the core of many models in
�elds as various as coupled oscillators [67, 89, 77], consensus algorithms [66, 90], opinion
dynamics [98, 97, 12], diffusion [95, 89] or epidemic spreading [50] on complex networks.

Centralities and indices

Many metrics have been de�ned over the years to compare the properties of different networks
or within one network properties of different nodes [45]. Here we give a quick review of some
of them that are used in the following chapters. We �rst review local descriptors usually called
centralities focusing on nodal properties and then move to global network descriptors often
called network indices. A good overview of these notions is given in Ref. [16].

11



Chapter 1. Preliminaries

One possibility to de�ne a centrality is by using a distance metric. In that case, there are two
common ways to de�ne a centrality. The �rst one is the closeness centrality that reads for node
i ,

C c (i ,d) ˘

"

n¡1
nX

j ˘1
d(i , j )

#¡1

, (1.9)

where d(i ,k) is some distance metric going from node i to k. In words, it is simply the inverse
of the average distance between i and the other nodes of the network. Now if C (i ,d) is large
(small), it means that node i is central (peripheral) in the network according to the distance
d . The only failing of closeness centrality is that if a node j is not reachable from node i
then d(i , j ) ˘ 1 and thus C c diverges. To take into account such problems one may replace
arithmetic average by harmonic mean. This de�nes the harmonic centrality that reads,

C h(i ,d) ˘ n¡1 X

j 6˘i
d¡1(i , j ) . (1.10)

Centralities may also be de�ned without distances. For example, one can characterize nodes
according to their degree Eq. (1.3) or their local clustering coef�cient (see 1.1.2). Another
possibility is to consider the spectral characteristics of the nodes by looking at the eigenvectors
and eigenvalues of the adjacency or Laplacian matrices. Finally, based on any centrality, one
can establish a ranking of the nodes. Obviously, all these locally de�ned centralities can be
averaged over all nodes such that they may then be used as global indices describing the
network as a whole.

The next paragraphs brie�y discuss these known centralities, indices or ranking that appear in
the following chapters.

Geodesic distance

While looking at the connectivity of a network, one intuitive feature to say whether or not two
nodes are close to each other is the geodesic distance g (i , j ). It corresponds to the shortest
path between two nodes and is standardly obtained out of the powers of the adjacency matrix
of the network. For a general weighted network, the geodesic distance between node i and j
reads,

g (i , j ) ˘ min
all hi! j i

"
X

e2hi! j i
w(e)

#

, (1.11)

where hi ! j i denotes a path from i to j . Summing over all geodesic distances in the network
yields the average geodesic distance,

L ˘
2

n(n ¡ 1)

X

i˙ j
g (i , j ) . (1.12)
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1.1. A survey about complex networks

Index L, also called characteristic path length, measures how close nodes are within a network.
Geodesic distance is a very intuitive metric to measure how far nodes are from each other.
However, it only accounts for the shortest path and does not even take into account multiplicity
of such paths that may occur. For example, a �uid �owing from one node to another will not
only use the shortest path but all existing ones as well. In the results presented below, we
consider the resistance distance which accounts for all existing paths between nodes.

Clustering coef�cient

A network property that one may want to evaluate is the clustering. More precisely, whether a
network forms one large component with long range couplings or is made of small groups of
highly connected nodes. To measure such property of a network, one can de�ne the clustering
coef�cient cl (i ) [126]. The idea behind clustering coef�cient is to see how well connected are
the neighbors of a node i . If node i has ki i neighbors then there can be at most ki i (ki i ¡1)

2 edges
connecting them together. The clustering coef�cient of i is de�ned as,

cl (i ) ˘
2k 0

ki i (ki i ¡ 1)
, (1.13)

where k 0 is the actual number of edges connecting together the neighbors of i . Therefore,
nodes being part of a highly connected cluster have cl close to 1. Again one can de�ne the
average clustering of a network as,

C l ˘ n¡1
nX

i˘1
cl (i ) . (1.14)

It has been shown that starting from an initial regular cycle network and gradually rewiring
edges leads to small-world networks with the interesting property to have a low average
geodesic distance l while keeping a high clustering coef�cient C l [126]. This is illustrated in
Fig. 1.1, where small-world networks correspond to rewiring probabilities around 0.01. Inves-
tigation on such networks have demonstrated that they exhibit enhanced synchronization
properties [10].

PageRank

One of the most famous ranking of nodes in complex networks is probably the PageRank [23].
It is de�ned from the row stochastic adjacency matrix A,

ai j ˘

( ai j
ki i

, if i 6˘ j ,
0 , if i ˘ j .

(1.15)

Then one can de�ne a new matrix as,[16]

G ˘ fi A ¯ (1 ¡fi)1T v , (1.16)
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Chapter 1. Preliminaries

Figure 1.1 � Clustering coef�cient C l (denoted C on the �gure) and characteristic path length
L for networks obtained from a rewiring procedure that starts from an initial regular cyclic
network with n ˘ 1000 nodes and 1st- to 5th-nearest neighbors coupling. Then each edge is
rewired with a probability p. C l and L have been averaged over 20 realizations. Figure taken
from Ref. [126].

where fi 2 [0,1) and v is a distribution. By Perron-Fröbenius theorem, G has a left dominant
eigenvector p whose components are all positive. Therefore p can be interpreted as a proba-
bility distribution. The PageRank is then given by ordering the components of p . It gives a
ranking of the nodes according to the frequency at which they are visited during a random
walk on the network. The second term in Eq. (1.16) allows the random walker to jump with a
probability (1 ¡fi) to any node at each step. The main advantage of PageRank is its rather low
computational cost even for large networks. Indeed, from the row stochastic property of G ,
the eigenvalue corresponding to p is equal to 1 . Therefore p can be obtained by applying G
many times on any starting distribution w as,

p ˘ lim
N!1

GN w . (1.17)

The computational ef�ciency of this ranking has been exploited by Google web search engine
to order large number of referenced sites.

To summarize, most complex network metrics have been de�ned from coupling structure or
by considering random processes evolving on them. However, coupled dynamical systems
usually have to satisfy conservation laws dictated by the physics governing the system. It is
thus often complicated to connect analytically, complex network metrics that have intuitive
meaning to coupled dynamical systems. Some well-known results where such connection
has been established for epidemic spreading and diffusion on complex networks are given by
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1.2. Coupled oscillators and related models

Refs. [95, 44].

Coupled oscillators and related models

Kuramoto oscillators

The most famous model of coupled oscillators is that of Kuramoto [77] and reads,

�µi ˘ Pi ¡
nX

j ˘1
ai j sin(µi ¡µ j ) , i ˘ 1, ...,n . (1.18)

These coupled differential equations describe a set of n oscillators, each of them having as
degree of freedom a compact angle coordinate µi 2 (¡…,…] and an internal parameter called
natural frequency6 Pi . The coupling is given by the elements of the adjacency matrix ai j .
Originally, Kuramoto introduced his model with a homogeneous all-to-all interaction network,
i.e. ai j ˘ K /n and showed that above a critical coupling strength K ¨ Kc , a �nite fraction of
the oscillators synchronize with �µi ¡ �µ j ˘ 0 [77]. For even larger values of K , all oscillators
evolve in synchrony with �µi ˘ �µ j 8i , j . Such synchronous state is called phase-locking state.7

Synchronization is also achievable with oscillators coupled on complex networks provided
that the coupling is large enough compared to the width of distribution of Pi ’s [67, 39].

A phase-locking state µ(0) of Eq. (1.18) satis�es,

Pi ˘
nX

j ˘1
ai j sin(µ(0)

i ¡µ(0)
j ) , i ˘ 1, ...,n . (1.19)

The existence and number of different synchronous states as well as their characteristics
strongly depend on the coupling network and the distribution of Pi ’s. It has been shown for
planar networks that each stable �xed point can be identi�ed by the winding vector q(µ(0))
describing the loop �ows on each cycle of the network [73, 42, 68, 34]. For a network made of
a single cycle, the winding number reads,

q(µ(0)) ˘ (2…)¡1
nX

i˘1

flflflµ(0)
i ¡µ(0)

i¯1

flflfl
[¡…,…)

, (1.20)

where
flflflµ(0)

i ¡µ(0)
i¯1

flflfl
(¡…,…]

means angle differences taken module 2… in the interval (¡…,…] .

Fig. 1.2 illustrates a stable �xed point for a meshed network with non zero winding vector. A
numerical procedure to �nd such synchronous states is given in Ref. [35].

The linear stability of µ(0) can be analyzed by calculating the Jacobian matrix8 J (µ(0)) of

6The reason of such a name is that in a completely decoupled system, from Eq. (1.18) each oscillator rotates at
its natural frequency i.e. �µi ˘ Pi .

7We refer to such a state as stable �xed point, steady or stationnary or synchronous state or equilibrium.
8Also called stability matrix.
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Figure 1.2 � Example of a stable �xed point of Eq. (1.18) with identical natural frequencies
Pi ˘ 0 8i de�ned on a meshed network (model of the UK AC transmission grid [84, 35]). The
�xed point is characterized by a non zero winding number q ˘ 1 on the large cycle highlighted
in red. Figure adapted from Ref. [35].

Eq. (1.18) that is,

£
J (µ(0))

⁄
i j ˘

(
ai j cos(µ(0)

i ¡µ(0)
j ) , if i 6˘ j ,

¡
Pn

k˘1 ai k cos(µ(0)
i ¡µ(0)

k ) , if i ˘ j .
(1.21)

One should note that J (µ(0)) de�ned in Eq. (1.21) satis�es all the properties of a Laplacian
matrix, i.e

P
j
£
J (µ(0))

⁄
i j ˘

P
i
£
J (µ(0))

⁄
i j ˘ 0 . Moreover, it has been shown that if jµ(0)

i ¡µ(0)
j j ˙

…/2 8i , j then the eigenvalues of J (µ(0)) are all non-positive and thus µ(0) is a stable �xed
point of Eq. (1.18) [35]. In the following chapters, whenever we consider a stable �xed point, it
means that the eigenvalues of its corresponding stability matrix are all negative.

To investigate the transient behavior of the system near its synchronous state, one can linearize
the dynamics of Eq. (1.18) around µ(0). Doing so, the initial non-linear oscillators are reduced
to linear oscillators evolving on a new network whose edge weights are given by minus the
stability matrix, namely ai j cos(µi ¡µ j ) instead of ai j . As it is a linear system, it is analytically
solvable. Some details are given in the next section.

The Kuramoto model can be extended to massive oscillators by adding a second-order time
derivative to Eq. (1.18) that yields,

mi ¤µi ¯ di �µi ˘ Pi ¡
nX

j ˘1
ai j sin(µi ¡µ j ) , i ˘ 1, ...,n . (1.22)
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1.2. Coupled oscillators and related models

Now each oscillator has two additional dynamical parameters, namely an inertia mi and a
damping di . One feature modelled by introducing inertia is non instantaneous response
of the frequency to perturbations. Obviously, the synchronous states of Eq. (1.22) are the
same as Eq. (1.18). Beside being paradigmatic models for synchronization for neuronal or
Josephson junctions networks, one physical realization of Eqs. (1.18), (1.22) that has attracted
an increasing interest over the last decade are high voltage power networks [104]. In that
case, µi ’s are phases of the complex voltage and natural frequencies are injected (Pi ¨ 0) or
consumed (Pi ˙ 0) power at each bus. Nodes are thus either loads (Pi ˙ 0) or generators (Pi ¨
0). Usually loads do not have any inertia and thus their dynamics are governed by Eq. (1.18)
while conventional generators have inertia with a dynamics therefore given by Eq. (1.22). Such
mix of �rst- and second-order Kuramoto oscillators describes the dynamics of high voltage
power grids in the lossless line approximation9, on short time scales, where variations in
voltage amplitudes are neglected as they �uctuate on longer time scales [13, 39, 83].

Linear oscillators

Instead of the non-linear sine coupling of Eq. (1.18), one can consider linear coupled oscillators
with continuous degrees of freedom xi 2 R 8i , whose dynamics takes the simple form,

�xi ˘ Pi ¡
nX

j ˘1
ai j (xi ¡ x j ) , i ˘ 1, ...,n . (1.23)

Note that the second term on the right-hand side of Eq. (1.23) is the product of the Laplacian
of the network times x . Thus Eq. (1.23) reads in a vectorial form,

�x ˘ P ¡Lx . (1.24)

The solution of Eq. (1.24) is simply obtained from eigenvalues ‚fi and eigenvectors ufi of L as,

x(t ) ˘
X

fi

•
(x(t ˘ 0) ¢ ufi)e¡‚fit ¯ e¡‚fit

Z t

0
e‚fit 0

P (t 0) ¢ ufidt 0
‚

ufi , (1.25)

where we take into account a possible time-dependence of the natural frequencies P . Steady
states solution x (0) of Eq. (1.23) is obtain using the pseudo inverse of L as,

x (0) ˘ L� P . (1.26)

With Pi ˘ 0 8i , Eq. (1.23) corresponds to a �rst order consensus model [103].

9The real part of the admittance, namely the conductance of the lines is neglected. This is a justi�ed approxima-
tion for high voltage power networks for which conductance is typically ten times smaller than susceptance.
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Linear response theory

When subject to modi�cation or perturbation of internal parameters or degrees of freedom, a
dynamical system enters a transient regime. Depending on the strength of the perturbation,
one should differentiate small-signal response where the system stays close to its initial
�xed point from larger perturbations that eventually lead to escape from the initial basin
of attraction. In the case of small-signal response, the transient behavior of the system
can be approximated by its linear response. We give details and illustrations of the linear
response of Eq. (1.18) taken at a �xed point µ(0) for P (0) to an additive perturbation in the
natural frequencies. More precisely one has P (t) ˘ P (0) ¯ –P (t) that makes angles become
time-dependent as µ(t ) ˘ µ(0) ¯–µ(t ) . Equation (1.18) then becomes,

– �µi (t ) ˘ P (0)
i ¯–Pi (t ) ¡

nX

j ˘1
ai j sin

h
µ(0)

i ¯–µi (t ) ¡µ(0)
j ¡–µ j (t )

i
, i ˘ 1, ...,n . (1.27)

The linear response is given by Taylor expanding the last term in the right hand side of Eq. (1.27)
that yields,

– �µi (t ) »̆ –Pi (t ) ¡
nX

j ˘1
ai j cos

‡
µ(0)

i ¡µ(0)
j

·£
–µi (t ) ¡–µ j (t )

⁄
, i ˘ 1, ...,n , (1.28)

where we used Eq. (1.19). Now that the time-dependence occurs only in linear expression, one
can rewrite Eq. (1.28) in a vectorial form as,

– �µ ˘ –P (t ) ¡L(µ(0))–µ . (1.29)

The linear response is equivalent to Eq. (1.24) with coupling strength given by L(µ(0))i j ˘

ai j cos
‡
µ(0)

i ¡µ(0)
j

·
. Therefore solution of Eq. (1.28) has a form similar to Eq. (1.30) as,

–µ(t ) ˘
X

fi

•
e¡‚fit

Z t

0
e‚fit 0

–P (t 0) ¢ ufidt 0
‚

ufi , (1.30)

where ‚fi and ufi are eigenvalues and eigenvectors respectively of L(µ(0)) . Fig. 1.3 compares
–µi (t) numerically obtained by time-evolving Eq. (1.18) and the analytical expression for
the response Eq. (1.30) for two consecutive quench perturbations, –P1(t) ˘ –P0£(¿0 ¡ t) ¡
2–P0£(¿1 ¡ t )£(t ¡¿0) (see Eq (1.31)). To give a good illustration of the validity of the lineariza-
tion, we chose natural frequencies P (0) such that angle differences at the stable �xed point are
rather large (up to 45– ). One can remark that even for a perturbation with large amplitude
–P0 ˘ 0.1a0, linear response still gives a fair approximation of oscillators response even if one
notice some discrepancies when –µi (t ) becomes large.

The analytical expression for the response of the system to –P1(t ) ˘ –P0£(¿0 ¡ t )¡2–P0£(¿1 ¡
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t )£(t ¡¿0) is obtained from Eq. (1.30) as,

–µi (t ) ˘

8
>><

>>:

–P0 t ¯
P

fi‚2
–P0 ufi,i ufi, j

‚fi
(1 ¡ e¡‚fit ) , t ˙ ¿0,

3–P0 ¿0 ¡ 2–P0 t ¯
P

fi‚2
–P0 ufi,i ufi, j

‚fi
(3e¡‚fi(t¡¿0) ¡ e¡‚fit ¡ 2) , ¿0 ˙ t ˙ ¿1,

–P0 (3¿0 ¡ 2¿1) ¯
P

fi‚2
–P0 ufi,i ufi, j

‚fi
(3e¡‚fi(t¡¿0) ¡ e¡‚fit ¡ 2e¡‚fi(t¡¿1)) , ¿1 ˙ t .

(1.31)

Note that other tools are standardly used to analyze system’s responses such as observability
Gramians [119] or transfer functions [93].
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Figure 1.3 � Comparison between oscillators response numerically obtained (grey solid
lines) and the analytical expression Eq. (1.31) (red dashed lines) for perturbation shown
in lower panels (second and fourth rows) applied on node 1 depicted in inset, i.e –P1(t) ˘
–P0£(¿0 ¡ t )¡2–P0£(¿1 ¡ t )£(t ¡¿0) . The amplitude of the perturbation has been multiplied
by ten in the bottom panels compared the top ones. The coupling among oscillators is
homogeneous with ai j ˘ a0, and the natural frequencies P (0) are uniformly distributed in the
interval a0[¡0.75,0.75] .
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2 Robustness of Synchrony in Complex
Networks and Generalized Kirchhoff
Indices

Chapter 2 is a postprint version of a letter published as:
M. Tyloo, T. Coletta, P. Jacquod, Physical Review Letters 120(8):084101 (2018) [121].
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Chapter 2. Robustness of Synchrony in Complex Networks and Generalized Kirchhoff
Indices

In network theory, a question of prime importance is how to assess network vulnerability in
a fast and reliable manner. With this issue in mind, we investigate the response to external
perturbations of coupled dynamical systems on complex networks. We �nd that for speci�c,
non-averaged perturbations, the response of synchronous states depends on the eigenvalues
of the stability matrix of the unperturbed dynamics, as well as on its eigenmodes via their
overlap with the perturbation vector. Once averaged over properly de�ned ensembles of
perturbations, the response is given by new graph topological indices, which we introduce as
generalized Kirchhoff indices. These �ndings allow for a fast and reliable method for assessing
the speci�c or average vulnerability of a network against changing operational conditions,
faults or external attacks.

Introduction

From social to natural sciences, communication technology to electrical engineering, in-
formation sciences to cybernetics, graph theory profoundly impacts many �elds of human
knowledge [9]. Graphs allow for a convenient modelization of complex systems where their
structure de�nes the couplings between the system’s individual components, each of them
with its own internal dynamics. The resulting coupled differential equations determine the
system dynamics and its steady-state solutions. Of particular interest is to predict the behavior
of the system when it is perturbed away from steady-state, for instance when an electric power
plant goes of�ine in an operating power grid or when a line is cut and information has to
be redirected in a communication network. An issue of key importance for network security
is how to assess fast and reliably a network’s vulnerability. This is not an easy task: network
vulnerability depends on both the system dynamics and the network topology and geometry.
It is highly desirable to identify a set of easily computed descriptors that characterize network
vulnerability [45]. In this manuscript we propose a new family of network descriptors in
a two-step approach. We investigate the sensitivity against external perturbations of syn-
chronous states of coupled dynamical systems on complex networks. First, we quantify this
sensitivity using performance measures recently introduced in the context of electric power
grids [7, 119, 102]. Second, by direct calculation of these performance measures, we identify
a new class of easily computed topological indices that generally characterize synchrony
robustness/fragility under ensemble-averaged perturbations.

Synchronization is ubiquitous [117] in systems of coupled dynamical systems. It follows
from the interplay between the internal dynamics of the individual systems and the coupling
between them [77, 105, 3, 100]. Optimization of synchronization has been investigated from
various angles. The synchronous state can be optimal from the point of view of linear stabil-
ity [99], the range of parameters that allow synchronization [10, 26, 132], the value that an
order parameter takes at synchrony [111] or the volume of the basin of attraction around a sta-
ble synchronous �xed point [128, 86, 35]. Here we extend these investigations by asking what
makes synchronous states more or less fragile against external perturbations. The answer is
surprisingly simple and applies to a large variety of perturbations and of fragility performance
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measures � synchrony fragility depends on a family of topological indices, which generalize
the Kirchhoff index introduced in Ref. [71].

Model and method

Our analysis focuses on the Kuramoto model [77]

�µi ˘ Pi ¡
X

j
ai j sin(µi ¡µ j ) , i ˘ 1, ...,n , (2.1)

though our results are more general and apply to a wider class of coupled dynamical systems
(see 2.9.8). Eq. (2.1) models the behavior of a set of n harmonic oscillators, each with its angle
coordinate µi and its natural frequency Pi , coupled to one another with couplings de�ned by
the weighted adjacency matrix ai j ‚ 0. Kuramoto originally considered identical all-to-all cou-
pling, ai j · K /n [77]. It was found that for K ¨ Kc , a �nite number of oscillators synchronize,
with �µi ¡ �µ j ˘ 0. This type of frequency synchronization also occurs for nonhomogeneous
couplings bi j de�ned on a complex network [40], the case of interest here. Without loss of
generality we set

P
i Pi ˘ 0, for which the frequency synchronous state has �µi · 0, 8i 1.

We consider a stable �xed-point solution µ(0) ˘ (µ(0)
1 , . . . ,µ(0)

n ) to Eq. (2.1) with unperturbed
natural frequencies P (0). We then subject this state to a time-dependent perturbation P (t ) ˘
P (0) ¯ –P (t), so that angles become time-dependent, µ(t) ˘ µ(0) ¯ –µ(t). Linearizing the
dynamics of Eq. (2.1) about µ(0), one obtains

– �µ ˘ –P ¡L(µ(0))–µ , (2.2)

where we introduced the weighted Laplacian matrix L(µ(0)) with matrix elements

Li j ˘

(
¡ai j cos(µ(0)

i ¡µ(0)
j ) , i 6˘ j ,

P
k ai k cos(µ(0)

i ¡µ(0)
k ) , i ˘ j .

(2.3)

This Laplacian is minus the stability matrix of the linearized dynamics, and since we consider
a stable synchronous state, it is positive semide�nite, with a single eigenvalue ‚1 ˘ 0 with
eigenvector u1 ˘ (1,1,1, ...1)/

p
n, and ‚i ¨ 0, i ˘ 2,3, ...n.

The �rst term on the right-hand side of Eq. (2.2) perturbs angles away from the synchronous
state. To assess the magnitude of this excursion in the spirit of Refs. [7, 119, 102] we consider

1For systems with
P

i Pi ˘ n› 6˘ 0, this is equivalently achieved by considering the system in a rotating frame
with µi (t ) ! µi (t ) ¯›t .
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two fragility performance measures

P1(T ) ˘
X

i

Z T

0
j–µi (t ) ¡¢(t )j2dt , (2.4a)

P2(T ) ˘
X

i

Z T

0
j– �µi (t ) ¡ �¢(t )j2dt . (2.4b)

Because synchronous states are de�ned modulo any homogeneous angle shift, the trans-
formation µ(0)

i ! µ(0)
i ¯ C does not change the synchronous state. Accordingly, only angle

shifts with
P

i –µi (t ) ˘ 0 matter, which is incorporated in the de�nitions of P1,2 by subtracting
averages ¢(t ) ˘ n¡1 P

j –µ j (t ) and �¢(t ) ˘ n¡1 P
j – �µ j (t ). An alternative procedure is to restrict

oneself to perturbations orthogonal to u1 [7, 119, 102]. Either procedure ensures, together
with the non-negativity of L, that P1,2 ˙ 1, even when T ! 1, if the perturbation is short and
weak enough that it leaves the dynamics inside the basin of attraction of µ(0). Low values for
P 1

1,2 · P1,2(T ! 1) indicate then that the system absorbs the perturbation with little �uctua-
tions, while large values indicate a temporary fragmentation of the system into independent
pieces � P 1

1,2 measures the coherence of the synchronous state [7].

We expand angle deviations over the eigenstates ufi of L, –µ(t) ˘
P

fi cfi(t)ufi, and rewrite
Eq. (2.2) as

�cfi(t ) ˘ –P (t ) ¢ ufi ¡‚ficfi(t ) , (2.5)

whose general solution reads

cfi(t ) ˘ e¡‚fit cfi(0) ¯ e¡‚fit
Z t

0
dt 0e‚fit 0

–P (t 0) ¢ ufi . (2.6)

Being interested in perturbations –P that start at t ˘ 0, when the system is in the synchronous
state with –µ(0) ˘ 0, we set cfi(0) · 0. The performance measures of Eqs. (2.4) are given
by P1(T ) ˘

P
fi‚2

R T
0 c2

fi(t)dt and P2(T ) ˘
P

fi‚2
R T

0 �c2
fi(t)dt . We next introduce generalized

Kirchhoff indices in terms of which we express P1,2 for three different classes of perturbations
–P (t ).

Generalized Kirchhoff indices.

The Kirchhoff index originally followed from the de�nition of the resistance distance in a
graph [71]. To a connected graph, one associates an electrical network where each edge is a
resistor given by the inverse edge weight in the original graph. The resistance distance is the
resistance ›(1)

i j
2 between any two nodes i and j on the electrical network. The Kirchhoff index

is then de�ned as [71]
Kf1 ·

X

i˙ j
›(1)

i j , (2.7)

2Superscript notation ›(1)
i j will become clear in chapter 3.
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where the sum runs over all pairs of nodes in the graph. For a graph with Laplacian L, it has
been shown that Kf1 is given by the spectrum {‚fi} of L as [133, 56, 29]

Kf1 ˘ n
X

fi‚2
‚¡1

fi . (2.8)

Up to a normalization prefactor, Kf1 gives the mean resistance distance › over the whole
graph. Intuitively, one expects the dynamics of a complex system to depend not only on
›(1), but on the full set {›(1)

i j }. Higher moments of {›(1)
i j } are encoded in generalized Kirchhoff

indices Kfp (see 2.9.1) which we de�ne as

Kfp ˘ n
X

fi‚2
‚¡p

fi , (2.9)

for integers p. Below we show that P1,2 can be expressed as linear combinations of the Kfp ’s
corresponding to L in Eq. (2.3). We note that, continued to p 2 C, Kfp is known as the spectral
zeta function of L [125].

Dirac delta perturbation

We �rst consider –P (t) ˘ –P0 ¿0 –(t) with the Dirac delta-function –(t). Because the pertur-
bation is limited in time, the limit T ! 1 can be taken in Eqs. (2.4). One obtains (see 2.9.3)

P 1
1 ˘

X

fi

(–P0 ¢ ufi)2¿2
0

2
‚¡1

fi , (2.10a)

P 1
2 ˘

X

fi

(–P0 ¢ ufi)2¿2
0

2
‚fi . (2.10b)

Both performance measures depend on the scalar product of the perturbation –P0 with
the eigenmodes ufi of L. Such scalar products occur also when analyzing propagation of
disturbances on networks [69]. To get more insight on the typical network response, we
de�ne an ensemble of perturbation vectors with h–P0i –P0 j i ˘ –i j h–P 2

0 i3. Averaging over that
ensemble gives

hP 1
1 i ˘

h–P 2
0 i¿2

0

2n
Kf1 , (2.11a)

hP 1
2 i ˘

h–P 2
0 i¿2

0

2n
Kf¡1 . (2.11b)

The network structure determines the performance measures via the spectrum of the weighted
Laplacian of Eq. (2.3). The latter depends on the network structure � its topology and edge
weights, as well as the internal dynamics of the oscillators, which modi�es the edge weights

3The choice –P0 ˘ (0,0, ...,0,¢i ,0, ...) is equivalent to the averaging procedure used in the approach to perfor-
mance measures used in Refs.[7, 119].
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via angle differences µ(0)
i ¡µ(0)

j determined by P (0). The way all these ingredients determine
average network fragility is however simply encoded in Kf¡1 and Kf1. We note that Eq. (2.11a)
appeared in slightly different, but equivalent form in Ref. [7].

Box perturbation

Next, we go beyond the –-perturbations discussed so far [7, 119, 102] and consider a perturba-
tion that is extended, but still limited in time, –P (t ) ˘ –P0 £(t )£(¿0 ¡ t ),4with the Heaviside
function £(t ) ˘ 0, t ˙ 0 and £(t ) ˘ 1, t ¨ 0. Here also, the limit T ! 1 can be taken in Eqs. (2.4).
One obtains (see 2.9.4)

P 1
1 ˘

X

fi‚2

(–P0 ¢ ufi)2

‚3
fi

(‚fi¿0 ¡ 1 ¯ e¡‚fi¿0 ) , (2.12a)

P 1
2 ˘

X

fi‚2

(–P0 ¢ ufi)2

‚fi
(1 ¡ e¡‚fi¿0 ) . (2.12b)

As in Eqs. (2.10), both performance measures depend on –P0¢ufi. After averaging over the same
ensemble of perturbation vectors as above, Eq. (2.12) becomes (see Supplemental Material)

hP 1
1 i ˘ h–P 2

0 i
X

fi‚2

‚fi¿0 ¡ 1 ¯ e¡‚fi¿0

‚3
fi

’

(
h–P 2

0 i¿2
0 Kf1

–
2n , ‚fi¿0 ¿ 1,8fi ,

h–P 2
0 i¿0 Kf2/n , ‚fi¿0 À 1,8fi .

(2.13a)

hP 1
2 i ˘ h–P 2

0 i
X

fi‚2

1 ¡ e¡‚fi¿0

‚fi
’

(
h–P 2

0 i¿0 Kf0/n , ‚fi¿0 ¿ 1,8fi ,
h–P 2

0 iKf1/n , ‚fi¿0 À 1,8fi .
(2.13b)

Compared to Dirac delta perturbations, hP 1
1 i now depends on Kf2 when ¿0 is the longest time

scale. This is so, because time-extended perturbations scatter through the network before
they are damped by L. Accordingly, they depend on details of the network contained in higher
moments of the distribution of resistance distances, hence on a generalized Kirchhoff index of
higher order.

Noisy perturbation

We �nally consider �uctuating perturbations characterized by zero average and second mo-
ment –Pi (t1)–P j (t2) ˘ –i j –P 2

0i exp[¡jt1 ¡ t2j/¿0] correlated over a typical time scale ¿0. Be-
cause this perturbation is not limited in time, we consider P1,2(T ) at �nite but large T . Keeping
only the leading order term in T , we have (see 2.9.5)

P1(T ) ˘ T
X

fi

P
i2Nn –P 2

0i u2
fi,i

‚fi(‚fi ¯¿¡1
0 )

¯O (T 0) , (2.14a)

P2(T ) ˘ (T /¿0)
X

fi

P
i2Nn –P 2

0i u2
fi,i

‚fi ¯¿¡1
0

¯O (T 0) . (2.14b)

4We also refer to such perturbation as quench perturbation.
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2.7. Numerical simulations

The response is determined by the overlap of the perturbation vector with the eigenmodes
of L. The noise amplitude –P 2

0i is localized on the set Nn of noisy nodes. Averaging over an
ensemble of perturbations de�ned by all permutations of the noisy nodes over all nodes (see
2.9.5), hP1,2i is given by Eqs. (2.14) with

P
i –P 2

0i u2
fi,i ! h–P 2

0 i. If ¿¡1
0 lies inside the spectrum

of L, P1,2 are functions of the spectrum of L and the inverse correlation time ¿¡1
0 . If, on the

other hand, ¿¡1
0 lies outside the spectrum of L, averaged measures are directly expressable as

in�nite sums over generalized Kirchhoff indices, hP1,2i ˘ n¡1 h–P 2
0 iT

P1
m˘0 C (m)

1,2 with

C (m)
1 ˘

(
(¡1)m ¿(m¯1)

0 Kf¡m¯1 , ‚fi¿0 ˙ 1,
(¡1)m ¿¡m

0 Kfm¯2 , ‚fi¿0 ¨ 1,
(2.15a)

C (m)
2 ˘

(
(¡1)m ¿m

0 Kf¡m , ‚fi¿0 ˙ 1,
(¡1)m ¿¡(m¯1)

0 Kfm¯1 , ‚fi¿0 ¨ 1.
(2.15b)

Numerical simulations

To con�rm our results numerically, we focus on P1 for both box and noisy perturbations,
varying their time scale ¿0. We consider Eq. (2.1) with two types of networks, (i) small-world
networks, where a cycle graph with constant coupling ai j ˘ a0 for any node i to its 4 near-
est neighbors undergoes random rewiring with probability pr 2 [0,1] [126]5, and (ii) simple
cyclic networks where each node is coupled to its nearest- and q th-neighbors with a constant
coupling ai ,i§1 ˘ ai ,i§q ˘ a0 (see inset in Fig. 2.2). In both cases, we �x the number of nodes
to n ˘ 50. In all cases, the unperturbed natural frequencies vanish, P (0)

i ˘ 0. The box pertur-
bation has –P0 ˘ (0,0, ...,–P0i1 ,0, ...,–P0i2 ,0, ...) with –P0i1 ˘ ¡–P0i2 ˘ 0.01 a0, and averaging is
performed over all pairs of nodes (i1, i2). The noisy perturbation acts on all nodes, and we
construct noise sequences Pi (t) satisfying –Pi (t1)–P j (t2) ˘ –i j –P 2

0i exp[¡jt1 ¡ t2j/¿0] using
the method described in Ref. [48], with –P0i ˘ 0.01 a0.

The theory is numerically con�rmed for small-world networks in Fig. 2.1, where P1 decreases
monotonously as the rewiring probability p increases, in complete agreement with the pre-
dictions of Eqs. (2.13a) and (2.14a) (colored solid lines). This is qualitatively understood as
follows. As pr increases and more network edges are rewired, more couplings with longer
range appear in the network, which stiffens the synchronous state. Fig. 2.1 shows that the
resulting decrease in fragility of synchrony occurs already with pr ’ 0.1 ¡ 0.2, where only few
long-range couplings exist in the network � true small-world networks [126]. Earlier works
showed that small-world networks have larger range of parameters over which synchrony
prevails, compared to random networks [10]. Fig. 2.1 shows that, additionally, synchronous
states in small-world networks are more robust than in regular networks.

Further insight into synchrony fragility is obtained when considering our cyclic graph model
with nearest- and q th-neighbor coupling. If the range of the coupling were the only ingredient

5Small-world networks roughly correspond to a p ’ 0.1 rewiring probability. Here we refer to the rewiring model
de�ned in Ref. [126] as "small-world networks" for any p 2 [0,1] by some abuse of language.
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Figure 2.1 � Performance measure hP 1
1 i (for box perturbation, left panel) and P1/T (for

noisy perturbation, right panel) for the small-world model with n ˘ 50 nodes as a function of
the rewiring probability pr [126] and with ¿0 ˘ 0.1/a0 (black), 0.5/a0 (blue), 1/a0 (red), 10/a0
(green) and 50/a0 (violet). Solid lines give Eqs. (2.13a) (left) and (2.14a) (right) calculated
numerically over an ensemble of networks obtained from 20 different rewirings. The dotted-
dashed lines give Kf1 and the dashed lines Kf2, both vertically shifted. In the right panel, P1(T )
is averaged over T 0 2 [T ¡200/a0,T ¯200/a0] with T ˘ 800/a0, and error bars give the standard
deviation of numerically obtained values with 10 different noise sequences.

determining the fragility of the synchronous state, then one would observe a monotonous
decrease of P1 as a function of q . Fig. 2.2 shows numerical results for the cyclic graphs and
�ve values of ¿0 ranging from ‚fi¿0 . 1 to ‚fi¿0 & 1, 8fi. Analytical results of Eqs. (2.13a) and
(2.14a), in particular, the crossover from hP 1

1 i » Kf1 to hP 1
1 i » Kf2 predicted in Eq. (2.13a)

when ¿0 increases, are clearly con�rmed. Particularly remarkable is that Kf1 and Kf2 are not
monotonous in the coupling range q (see 2.9.7), which is clearly re�ected in the behavior
of hP 1

1 i. This unambiguously demonstrates that average fragility of synchrony does not
depend trivially on the range of the couplings between oscillators, but is entirely determined
by generalized Kirchhoff indices.

Conclusion

Using both performance measures de�ned in Eqs. (2.4), we have expressed synchrony fragility
in terms of the weighted Laplacian matrix L of the system’s network. We have �rst shown
that the response to speci�c perturbations is determined by both the spectrum of L and its
eigenmodes ufi through their scalar product –P0 ¢ ufi with the perturbation vector. Eqs. (2.10),
(2.12) and (2.14) clearly indicate that perturbations overlapping with the eigenmodes with
smallest Lyapunov exponents have the largest impact on the synchronous state. The most
vulnerable nodes are accordingly identi�ed as the nodes carrying these eigenmodes. Second,
we considered performance measures averaged over ergodic ensembles of perturbations. In

28
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Figure 2.2 � Performance measure hP 1
1 i (for box perturbation, left panel) and P1/T (for

noisy perturbation, right panel) for the cyclic graph with n ˘ 50 nodes with nearest- and
q th-neighbor coupling, ai ,i§1 ˘ bi ,i§q ˘ a0, as a function of q and with ¿0 ˘ 0.1/a0 (black),
0.5/a0 (blue), 1/a0 (red), 10/a0 (green) and 50/a0 (violet). Solid lines give Eqs. (2.13a) (left)
and (2.14a) (right). The dotted-dashed lines give Kf1 and the dashed lines Kf2, both vertically
shifted. In the right panel, P1(T ) is averaged over T 0 2 [T ¡200/a0,T ¯200/a0] with T ˘ 800/a0,
and error bars give the standard deviation of numerically obtained values with 10 different
realizations of noisy perturbations. The inset sketches the model for n ˘ 8 and q ˘ 3.

this case, they depend on L only through generalized Kirchhoff indices, which we introduced
in Eq. (2.9). The latter are both spectral and topological in nature, as they can be re-expressed
in terms of the resistance distances in the virtual network de�ned by L (see 2.9.1). A network’s
average/global fragility can therefore be easily quanti�ed by a direct calculation of generalized
Kirchhoff indices. This is a computationally easy task, requiring in most instances to determine
few of the smallest eigenvalues of L, and that, for a given system, can be done for few typical
�xed points once and for all. Our �ndings are rather general and generalized Kirchhoff indices
naturally characterize the fragility of synchronous states for many coupled dynamical systems,
beyond the Kuramoto model considered here as well as for other types of perturbation not
discussed here (see 2.9.8).

Two extensions of this work should be considered in priority. First, our approach has been
based on the implicit assumption that the perturbation is suf�ciently weak that the system
stays close to its initial state. Criteria for acute vulnerability should account for the breakdown
of this assumption and quantify the perturbation threshold above which networks either lose
synchrony or change their synchronous state. Second, synchrony fragility for second-order
systems with inertia should be considered, investigating in particular more closely the case
of electric power grids under the in�uence of �uctuating power injections [131]. Work along
those lines is in progress.
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Appendix

Generalized Kirchhoff indices

For a complex graph determined by its Laplacian matrix L, we introduce a family of graph
invariants

Kfp ˘ n
X

fi‚2
‚¡p

fi , (2.16)

where ‚fi is an eigenvalue of L. We call them generalized Kirchhoff indices because the Kirch-
hoff index introduced in Ref. [71] can be expressed as [133, 56]

Kf1 ˘ n
X

fi‚2
‚¡1

fi . (2.17)

We show that, just like the original Kirchhoff index Kf1, generalized Kirchhoff indices can
be expressed as functions of the resistance distances between any pair of nodes (i , j ) in the
network. The network’s Laplacian matrix L has one zero eigenvalue. We therefore de�ne the
matrix ¡

¡ ˘ L¯ u1
>u1 , (2.18)

in terms of which the resistance distance ›(1)
i j between nodes i and j is de�ned as [71]

›(1)
i j ˘ ¡¡1

i i ¯¡¡1
j j ¡¡¡1

i j ¡¡¡1
j i . (2.19)

This can be rewritten in terms of the eigenvectors of L as [28]

›(1)
i j ˘

X

fi‚2

(ufi,i ¡ ufi, j )2

‚fi
, (2.20)

where the zero mode corresponding to ‚1 ˘ 0 is omitted in the sum. We show that Kf1 and Kf2

can be rewritten in terms of resistance distances. For Kf1, one has

X

i˙ j
›(1)

i j ˘
1
2

X

i , j

X

fi‚2

(ufi,i ¡ ufi, j )2

‚fi
˘ Kf1 , (2.21)

because the eigenvectors fi ‚ 2 of L satisfy
P

i ufi,i ˘ 0 and
P

i u2
fi,i ˘ 1. To express Kf2, higher

moments of the distribution of resistance distances are needed. One has,

X

i , j
›(1)

i j
2

˘
X

i , j ;fi,fl‚2

(ufi,i ¡ ufi, j )2(ufl,i ¡ ufl, j )2

‚fi‚fl
˘ 2n

X

i ;fi,fl‚2

u2
fi,i u2

fl,i

‚fi‚fl
¯

2(Kf1)2

n2 ¯
4Kf2

n
,

(2.22)

X

i , j ,k
›(1)

i j ›(1)
j k ˘

X

i , j ,k ;fi,fl‚2

(ufi,i ¡ ufi, j )2(ufl, j ¡ ufl,k )2

‚fi‚fl
˘

3(Kf1)2

n
¯ n2 X

i ;fi,fl‚2

u2
fi,i u2

fl,i

‚fi‚fl
. (2.23)
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Combining the latter two equations, one has

n
4

ˆ
X

i , j
›(1)

i j
2
!

¡
1
2

ˆ
X

i , j ,k
›(1)

i j ›(1)
j k

!

¯
(Kf1)2

n
˘ Kf2 . (2.24)

For p ‚ 3, it is possible though algebraically tedious to show that Kfp can be expressed in a
similar way in terms of higher moments of resistance distances.

Direct calculation of fragility measures

The fragility performance measures introduced in Eqs. (2.4) of the main text can be rewritten
in terms of the coef�cients of the expansion –µ(t ) ˘

P
fi cfi(t )ufi of angle displacements over

the eigenvectors ufi of L. One has

P1(T ) ˘
X

fi‚2

Z T

0
c2

fi(t )dt , P2(T ) ˘
X

fi‚2

Z T

0
�c2
fi(t )dt . (2.25)

The coef�cients cfi(t ) are solutions of

cfi(t ) ˘ e¡‚fit cfi(0) ¯ e¡‚fit
Z t

0
dt 0e‚fit 0

–P (t 0) ¢ ufi , (2.26)

and in our case where the perturbation starts at t ˘ 0, cfi(0) ˘ 0. We treat sequentially, and in
some additional details, the three perturbations considered in the main text.

Dirac delta perturbation

We �rst consider –P (t ) ˘ –P0¿0–(t ). Inserting it into Eq. (2.26) one obtains,

cfi(t ) ˘ (–P0 ¢ ufi)¿0e¡‚fit . (2.27)

This directly gives

P1(T ) ˘
X

fi‚2

(–P0 ¢ ufi)2¿2
0

2‚fi
(1 ¡ e¡2‚fiT ) , P2(T ) ˘

X

fi‚2

(–P0 ¢ ufi)2¿2
0

2
‚fi(1 ¡ e¡2‚fiT ) . (2.28)

Taking the limit ‚fiT À 1, one obtains Eqs. (10a,b) of the main text,

P1(T ! 1) ˘ P 1
1 ˘

¿2
0

2

X

fi‚2

(–P0 ¢ ufi)2

‚fi
, (2.29a)

P2(T ! 1) ˘ P 1
2 ˘

¿2
0

2

X

fi‚2
(–P0 ¢ ufi)2‚fi . (2.29b)

Averaging over the ensemble of perturbation vectors de�ned by h–P0i i ˘ 0, h–P0i –P0 j i ˘
–i j h–P 2

0 i, we have h(–P0 ¢ ufi)2i ˘
P

i , j h–P0i –P0 j iufi,i ufi, j ˘ h–P 2
0 i, 8fi. The averaged fragility
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measures become,

hP 1
1 i ˘

h–P 2
0 i¿2

0

2

X

fi‚2

1
‚fi

˘
h–P 2

0 i¿2
0

2n
Kf1 , (2.30a)

hP 1
2 i ˘

h–P 2
0 i¿2

0

2

X

fi‚2
‚fi ˘

h–P 2
0 i¿2

0

2n
Kf¡1 , (2.30b)

just as in Eqs. (2.11) in the main text.

Box perturbation

We next consider –P (t ) ˘ –P0£(t )£(¿0 ¡ t ). Eq. (2.26) with cfi(0) ˘ 0 now gives,

cfi(t ) ˘

(
(–P0 ¢ ufi)(1 ¡ e¡‚fit )

–
‚fi , t • ¿0 ,

(–P0 ¢ ufi)(e‚fi(¿0¡t ) ¡ e¡‚fit )
–

‚fi , t ¨ ¿0 .
(2.31)

Eqs. (2.25) become

P1(T ) ˘
X

fi‚2

(–P0 ¢ ufi)2

‚3
fi

(‚fi¿0 ¡ 1 ¯ e¡‚fi¿0 ¡
e2‚fi(¿0¡T )

2
¯ e‚fi(¿0¡T ) ¡

e¡2‚fiT

2
) ,(2.32a)

P2(T ) ˘
X

fi‚2

(–P0 ¢ ufi)2

‚fi
(1 ¡ e¡‚fi¿0 ¡

e2‚fi(¿0¡T )

2
¯ e‚fi(¿0¡2T ) ¡

e¡2‚fiT

2
) . (2.32b)

Taking the limit ‚fiT À 1, one recovers Eqs. (2.12) in the main text,

P 1
1 ˘

X

fi‚2

(–P0 ¢ ufi)2

‚3
fi

(‚fi¿0 ¡ 1 ¯ e¡‚fi¿0 ) , (2.33a)

P 1
2 ˘

X

fi‚2

(–P0 ¢ ufi)2

‚fi
(1 ¡ e¡‚fi¿0 ) . (2.33b)

Following the same averaging procedure as for the –-perturbation, one �nally recovers
Eqs. (2.13) in the main text,

hP 1
1 i ˘ h–P 2

0 i
X

fi‚2

1
‚3

fi
(‚fi¿0 ¡ 1 ¯ e¡‚fi¿0 ) , (2.34a)

hP 1
2 i ˘ h–P 2

0 i
X

fi‚2

1
‚fi

(1 ¡ e¡‚fi¿0 ) . (2.34b)

The asymptotic behaviors for ‚fi¿0 ¿ 1 and ‚fi¿0 À 1 are easily computed via a Taylor-
expansion.

Noisy perturbation

We �nally consider �uctuating perturbations characterized by zero average –P0i ˘ 0, and
second moments –Pi (t1)–P j (t2) ˘ –i j –P 2

0i exp[¡¿¡1
0 jt1 ¡ t2j] correlated over a typical time
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scale ¿0. With this ensemble average, one obtains,

P1(T ) ˘
X

fi‚2

Z T

0
c2

fi(t )dt

˘
X

fi‚2

Z T

0
e¡2‚fit

Z t

0

Z t

0
e‚fi(t1¯t2) –P (t1) ¢ ufi –P (t2) ¢ ufi dt1dt2dt

˘
X

fi‚2

X

i
(–P0i ufi,i )2

Z T

0
e¡2‚fit

Z t

0

Z t

0
e‚fi(t1¯t2)e¡jt1¡t2j/¿0 dt1 dt2 dt

˘
X

fi‚2

X

i
(–P0i ufi,i )2

"
T

‚fi(‚fi ¯¿¡1
0 )

¯
1 ¡ e¡2‚fiT

2‚2
fi(‚fi ¡¿¡1

0 )
¯

2(e¡(‚fi¯¿¡1
0 )T ¡ 1)

(‚fi ¯¿¡1
0 )(‚2

fi ¡¿¡2
0 )

#

.

To calculate P2 we note that,

�c2
fi(t ) ˘ ‚2

fic2
fi(t ) ¯ (–P (t ) ¢ ufi)2 ¡ 2‚fie¡‚fit

Z t

0
e‚fit 0

–P (t 0) ¢ ufi –P (t ) ¢ ufi dt 0 . (2.35)

One obtains, after some algebra

P2(T )i ˘
X

fi‚2

X

i
(–P0i ufi,i )2

"
T

¿0(‚fi ¯¿¡1
0 )

¯
1 ¡ e¡2‚fiT

2(‚fi ¡¿¡1
0 )

¯
2‚fi¿¡1

0 (e¡(‚fi¯¿¡1
0 )T ¡ 1)

(‚fi ¯¿¡1
0 )(‚2

fi ¡¿¡2
0 )

#

.

For ‚fiT À 1, one recovers Eqs. (eq:c12noisy) in the main text,

P1(T ) ˘
X

fi‚2

X

i
(–P0i ufi,i )2 T

‚fi(‚fi ¯¿¡1
0 )

¯O (T 0) , (2.36)

P2(T ) ˘
X

fi‚2

X

i
(–P0i ufi,i )2 ¿¡1

0 T

(‚fi ¯¿¡1
0 )

¯O (T 0) . (2.37)

Averaging over all permutations, ¾, of the components of –P0 ˘ (–P01, ...,–P0n) , one has the
following identity,

1
n!

X

¾

X

i
(–P0¾(i )ufi,i )2 ˘

(n ¡ 1)!
n!

ˆ
X

i
–P 2

0i

!ˆ
X

j
u2

fi, j

!

˘
(–P0)2

n
· h–P0

2i. (2.38)

We �nally obtain the leading-order contribution in T ,

hP1i(T ) ˘ h–P 2
0 i

X

fi‚2

T
‚fi(‚fi ¯¿¡1

0 )
¯O (T 0) , (2.39)

hP2i(T ) ˘ h–P 2
0 i

X

fi‚2

¿¡1
0 T

(‚fi ¯¿¡1
0 )

¯O (T 0) , (2.40)

which can be Taylor-expanded in geometric series when either ‚fi¿0 ¨ 1 or ‚fi¿0 ˙ 1, 8fi
to obtain hP1,2i ˘ n¡1 h–P 2

0 iT
P1

m˘0 C (m)
1,2 . One easily recovers the coef�cients P (m)

1,2 given in
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Eqs. (2.15) in the main text. Note that, when ‚fi¿0 ¿ 1,

hP1i(T ) ’
T h–P 2

0 i
n

P (0)
1 ˘

T h–P 2
0 i¿0

n
Kf1 , (2.41)

hP2i(T ) ’
T h–P 2

0 i
n

P (0)
2 ˘

T h–P 2
0 i

n
Kf0 . (2.42)

For ‚fi¿0 À 1, one obtains,

hP1i(T ) ’
T h–P 2

0 i
n

P (0)
1 ˘

T h–P 2
0 i

n
Kf2 , (2.43)

hP2i(T ) ’
T h–P 2

0 i
n

P (0)
2 ˘

T h–P 2
0 i

¿0n
Kf1 . (2.44)

Perturbations as Fourier series

From Eq. (2.6) in the main text, it is clear that, with cfi(0) ˘ 0, P1,2 will always be a sum
over eigenmodes of L labeled fi, and that each term in that sum contains a factor (–P ¢ ufi)2,
regardless of the choice of perturbation. Our �rst main conclusion, that the response of the
synchronous state under speci�c, nonaveraged perturbation depends on the spectrum of L
and on the overlap of its eigenmodes with the perturbation vector is therefore rather general.

Our approach can moreover be extended to any perturbation that can be expanded in a Fourier
series,

–P (t ) ˘
X

f

‡
–P¯

f exp[2…i f t/¿0] ¯–P¡
f exp[¡2…i f t/¿0]

·
. (2.45)

The condition that the components of the perturbation vector are real, –Pi 2 R, gives either
–P¯

f ,i ˘ –P¡
f ,i 2 R or –P¯

f ,i ˘ ¡–P¡
f ,i 2 iR. Because –P (t ˘ 0) ˘ 0, we consider only the latter

case in what follows. Eq. (6) in the main text gives

cfi(t ) ˘ exp[¡‚fit ]
X

f ,i
ufi,i –P f ,i (t )

‡e(‚fi¯2…i f /¿0)t ¡ 1
‚fi ¯ 2…i f /¿0

¡
e(‚fi¡2…i f /¿0)t ¡ 1

‚fi ¡ 2…i f /¿0

·
. (2.46)

In the long time limit we obtain

cfi(t ! 1) ˘
X

f ,i
ufi,i j–P f ,i (t )j

(4… f /¿0) cos(2… f t/¿0) ¡ 2‚fi sin(2… f t/¿0)
‚2

fi ¯ 4…2 f 2/¿2
0

(2.47)

To get the average of the performance measure P1, we square this expressions, average it over
an homogeneous ensemble of perturbation as in the main text and sum over fi. For a suf�-
ciently long duration of perturbation, integrating over time gives the dominant contribution
to the fragility performance measures (under the assumption that T is large, but shorter than

34



2.9. Appendix

the duration of the perturbation)

P1(T ) ’
T ¿2

0

2

X

fi, f
h–P2

f ,0i
4‚2

fi¿2
0 ¯ 16…2 f 2

(‚2
fi¿2

0 ¯ 4…2 f 2)2
. (2.48)

For each Fourier harmonics, the denominator can be Taylor-expanded, depending on whether
‚fi¿0 ¨ 2… f or ‚fi¿0 ˙ 2… f . When 2… f /¿0 lies outside the spectrum of the Laplacian, Eq. (2.48)
allows to express P1(T ) as a sum over even-order generalized Kirchhoff indices.

Kirchhoff indices and phase dynamics

Kirchoff indices in the cycle model with nearest and qth-neighbor coupling

The eigenvalues ‚fi of the Laplacian of our model with uniform nearest and q th-neighbor
coupling are obtained by a Fourier transformation and are given by,

‚fi ˘ 4 ¡ 2cos(kfi) ¡ 2cos(kfiq) , fi ˘ 1, ...,n , (2.49)

where kfi ˘ 2…(fi¡1)
n . Then one obtains,

Kf1 ˘ n
X

fi‚2

1
4 ¡ 2cos(kfi) ¡ 2cos(kfiq)

. (2.50)

The dependence of the denominator of Eq. (2.50) with q makes it is clear that Kf1 is a non
monotonous function of q . This is shown in Fig. 2.3 for n ˘ 50. As mentioned in the main
text, two seemingly similar choices of long range interactions may lead to large differences of
the Kirchhoff index. This translates into large variations of the network’s average resistance
distance, which can be understood topologically in terms of the commensurability of the
q th-neighbor coupling with the number n of nodes in the network. Since the resistance
distance between any two nodes accounts for all paths between them, one may expect that
q th-neighbor couplings provide short, alternative paths between nodes, effectively bringing
them closer to each other. This is however not always the case. In fact, if n is a small integer
multiple of q , or nearly so, paths involving multiple q-range hops, starting from a given node,
come back to the initial node or close to it. Such paths only allow to reach nodes in the close
vicinity of the starting node and do not reduce signi�cantly the resistance distance between
many nodes close to the original one. In contrast, without commensurability between q and
n, the resistance distance between most of the nodes to the original one is reduced.

This is illustrated in Fig. 2.3 which plots Kf1 and Kf2 as a function of q for n ˘ 50. As expected
peaks are present for q ˘ 10,17 and 24 such that n/q is a small integer or close to a small
integer. The insets of Fig. 2.3 sketch how despite these long range interactions some portions
of the network keep the same geodesic distance to the red node 1.
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Figure 2.3 � Kf1 (green) and Kf2 (violet) for a cyclic graph with n ˘ 50 with nearest and q th-
neighbor coupling, ai ,i§1 ˘ ai ,i§q ˘ a0. The inset sketches the model for q ˘ 17, 19, and 24 and
illustrates one path involving q th-range interactions starting from node 1 (red). The addition
of q th- neighbor interactions does not reduce the geodesic distance between the reference
node (red) and the set of nodes colored in blue.

In�uence on the phase dynamics

The two seemingly similar cycle models with n ˘ 50, nearest- and q th-neighbor coupling with
q ˘ 17 and q ˘ 19 considered in Fig. 2 in the main text nevertheless behave strikingly differently
under an external perturbation. This is so, because they have very different generalized
Kirchhoff indices Kf1 and Kf2. To illustrate this behavioral discrepancy, Fig. 2.4 compares the
phase dynamics for the box perturbation for these two graphs. The left panel is for the cyclic
graph with q ˘ 17, which has a fragility performance measure P1 bigger than for the cyclic
graph with q ˘ 19 in the right panel. Clearly the angle deviations on the left panel spread more
and take more time to return to the initial �xed point after the perturbation than on the right
panel. From Eq. (13b) in the main text, hP 1

1 i is proportional to Kf2 in the corresponding limit
‚fi¿0 À 1 8fi. The numerically obtained values (indicated in Fig. 2.4) of P1 follow that trend,
though not exactly, as expected for this single realization of perturbation.

‚2 vs. Generalized Kirchhoff indices

Here we show that the generalized Kirchoff indices give more information on the fragility of
synchronous states than the smallest Lyapunov exponent, ‚2. We compare star and cycle
graphs with the same number of nodes. In both cases the eigenvalues of the Laplacian matrix
can be calculated analytically. The spectrum of the Laplacian of a star graph with n nodes is
{0,1,n}, with the eigenvalue 1 having multiplicity n ¡ 2, thus ‚2 ˘ 1, Kf1 ˘ (n ¡ 1)2, and Kf2 ˘
(n3 ¡ 2n2 ¡ 1)/n. The spectrum of the Laplacian of a cycle graph with only nearest neighbor

36



2.9. Appendix

Figure 2.4 � Phases –µi for the cyclic graph with n ˘ 50 with nearest and q th-neighbor coupling,
ai ,i§1 ˘ ai ,i§q ˘ a0 with q ˘ 17 (left panel) and q ˘ 19 (right panel), as a function of the
normalized time t/¿0, for a box perturbation with ¿0 ˘ 50/a0 and perturbation vector with
non zero components –P0,1 ˘ a0, –P0,11 ˘ ¡a0.

coupling is ‚fi ˘ 2[1 ¡ cos(2…(fi ¡ 1)/n)], with fi ˘ 1, . . . ,n. One has, ‚2 ˘ 2[1 ¡ cos(2…/n)],
Kf1 ˘ n(n2 ¡ 1)/12, and Kf2 ˘ n(n2 ¡ 1)(n2 ¯ 11)/720. The density of eigenvalues approaching
zero increases with n in the cycle graph, while in the star graph the Lyapunov exponents
accumulate at a �nite value as n increases (i.e. ‚2 ˘ ‚3 ˘ . . . ˘ ‚n¡1 ˘ 1). Thus we expect a
crossover in the vulnerability of these two network topologies as n is increased. Fig. 2.5 shows
‚2 (left panel), and the performance measure P1 in both the limits ‚fi¿0 ¿ 1 (center panel)
and ‚fi¿0 À 1 (right panel) as a function of the number of nodes. For n ˙ 6, the cycle network
has a larger ‚2 and a smaller P1 compared to the star network which means that the largest
contribution to Kf1 and Kf2 comes from ‚¡1

2 . However, for 6 ¨ n ¨ 8, both Kf1 and Kf2 are not
dominated by ‚¡1

2 , therefore the cycle network is less fragile under an external perturbation
than the star network even though it has a smaller ‚2. For n ˘ 8 and n ˘ 9, the cycle network is
less fragile against short time perturbation but more fragile against long time perturbation
compared to the star network. This re�ects the fact that for those values, Kf1 is smaller for the
cycle than for the star network, while the relation is opposite for Kf2 [see the corresponding
relation between P1 and generalized Kirchhoff indices in Eq. (2.13a)].

We apply the same analysis to small-world graphs, which are obtained from a n ˘ 20 cycle
network with �rst and second nearest neighbor couplings, which are rewired [126]. Fig. 2.6
shows three graphs obtained with this procedure, which have different relations between ‚2

and their generalized Kirchhoff indices Kf1 and Kf2. Graph 1 has a smaller ‚2 but smaller
Kf1 or Kf2 compared to graph 2, while graph 3 has a smaller ‚2, similar Kf1 and larger Kf2

compared to graph 2. These relations are re�ected by the performance measures P1 for box
perturbations presented in Table 2.1.
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Figure 2.5 � ‚2 (left panel) and performance measure hP 1
1 i for a box perturbation with

¿0 ˘ 50/a0 (center panel) and ¿0 ˘ 0.1/a0 (right panel) as a function of the number of nodes
for the star network (red) and the cyclic network (blue). Solid lines give Eq. (2.13a). The dashed
lines give the two limits of Eq. (2.13a) : ‚fi¿0 ¿ 1 (center panel) and ‚fi¿0 À 1 (right panel)

Figure 2.6 � Starting from a homogeneous cyclic network with �rst and second nearest
neighbor couplings and size n ˘ 20, graphs 1, 2 and 3 have been obtained after rewiring some
randomly chosen edges.

Graph 1 2 3
‚2 0.834 0.954 0.835

‚fi¿0 ¿ 1 : hP 1
1 i / Kf1 3.16e-7 3.24e-7 3.22e-7

‚fi¿0 À 1 : hP 1
1 i / Kf2 1.83e-3 1.91e-3 1.98e-3

Table 2.1 � ‚2, performance mesure hP 1
1 i obtained numerically in the two limits : ‚fi¿0 ¿ 1

(¿0 ˘ 0.1/a0), ‚fi¿0 À 1 (¿0 ˘ 50/a0).
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Beyond Kuramoto

Instead of the Kuramoto model de�ned by Eq. (2.1), one may consider other models of cou-
pled dynamical systems. Two extensions have to be differentiated. First, one may consider
different coupling than the sine-coupling in the Kuramoto model. This is straightforwardly
included in our approach and leads only to a differently weighted Laplacian matrix, giving, for
a �xed network, a different Lyapunov spectrum and different eigenmodes ufi, but leaving all
expressions for the performance measures unchanged. Second, one may consider dynamical
systems with more internal degrees of freedom, such as the one considered by Pecora and
Carroll [99]

�x ˘ P(x) ¯B› H(x) , (2.51)

with x ˘ (x1,x2, ...xn), P(x) ˘
¡
f(x1), f(x2), ...f(xn)

¢
, B the Laplacian matrix of the graph con-

sidered and H a function de�ning the coupling between adjacent dynamical systems with
coordinates xi 2 Rd . Our approach assumes the existence of a synchronous state with
x(0)

1 ˘ x(0)
2 ˘ ... ˘ x(0)

n . Linearizing about the synchronous state with x ˘ x(0) ¯ –x and con-
sidering a perturbation gives, instead of Eq. (2.2),

–�x ˘ –P ¯ [I› DP(x(0)) ¯B› DH(x(0))]–x , (2.52)

where DP and DH are Jacobian matrices. The �rst term on the right-hand side is similar to the
perturbation considered above, and the third one is a generalization of the Laplacian term in
Eq. (2.2), where the network Laplacian is extended to take account of additional nodal degrees
of freedom. The new second term occurs because P now depends on internal degrees of
freedom x (it does not in the Kuramoto model). The formula given for the performance need
now to be evaluated with the eigenvalues ⁄fi,l and eigenmodes Ufi,l of I›DP(x(0))¯B›DH(x(0)),
l ˘ 1,2, ...d .
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3 Global Robustness vs. Local Vulner-
abilities in Complex Synchronous
Networks

Chapter 3 is a postprint version of an article published as:
M. Tyloo, P. Jacquod, Physical Review E, 100(3):032303 (2019) [120].
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In complex network-coupled dynamical systems, two questions of central importance are
how to identify the most vulnerable components and how to devise a network making the
overall system more robust to external perturbations. To address these two questions, we
investigate the response of complex networks of coupled oscillators to local perturbations. We
quantify the magnitude of the resulting excursion away from the unperturbed synchronous
state through quadratic performance measures in the angle or frequency deviations. We �nd
that the most fragile oscillators in a given network are identi�ed by centralities constructed
from network resistance distances. Further de�ning the global robustness of the system from
the average response over ensembles of homogeneously distributed perturbations, we �nd
that it is given by a family of topological indices known as generalized Kirchhoff indices. Both
resistance centralities and Kirchhoff indices are obtained from a spectral decomposition of
the stability matrix of the unperturbed dynamics and can be expressed in terms of resistance
distances. We investigate the properties of these topological indices in small-world and regular
networks. In the case of oscillators with homogeneous inertia and damping coef�cients, we
�nd that inertia only has small effects on robustness of coupled oscillators. Numerical results
illustrate the validity of the theory.

Introduction

Complex networks are widely used to model nature- as well as man-made coupled dynamical
systems [104]. Physical realizations of such systems range from microscopic Josephson junc-
tion arrays [127] and interacting molecules in chemical reactions [78, 77] to macroscopic high
voltage electric power grids [13] and communication or social networks [115, 9]. Individual
elements are represented by nodes in a complex network, which have internal parameters
and degrees of freedom. The latter are governed by differential equations that depend on both
the internal dynamics of the individual elements and the coupling to the adjacent nodes. Two
central questions are (i) how to identify nodes, which, once attacked, perturbed or removed,
have the most dramatic effect on the overall dynamics of the coupled system and (ii) how to
devise a coupling network guaranteeing robustness of the system against random external
perturbations. Attempts to answer such questions are often based on complex network theory,
numerically relating dynamical effects to graph-theoretic metrics. This approach has been
often criticized, e.g. in Refs. [19, 16, 63], because (i) it gives no a priori criterion for which
metric should be considered in which situation and (ii) it does not directly incorporate the
intrinsic dynamics of the network-coupled system.

Here we propose an altogether different analytical approach. First, we use robustness per-
formance measures that quantify the excursion during the transient dynamics following a
perturbation. Second, we spectrally decompose the coupling matrix to calculate the response
of the system to some external perturbations. Third, by direct calculation, we relate the ob-
tained analytical expressions for performance measures (i) to local centralities when analyzing
local vulnerabilities, and (ii) to global topological indices when assessing global robustness
of the networked system. Following these steps, we identify a new class of local and global
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topological indices that characterize robustness of synchrony of complex network-coupled
oscillators. Our method builds up on investigations of consensus algorithms [7, 54], electric
power systems [102, 93, 110] and coupled oscillators systems [121, 123]. Already implicitly
present in Refs. [54, 93, 110], the Kirchhoff index was �rst identi�ed as a global robustness
quanti�er in our earlier work, Ref. [121]. Local vulnerabilities have been more recently con-
nected to centralities related to the resistance distance [54, 123].

In this manuscript, we investigate vulnerabilities and global robustness of synchronous
network-coupled oscillators. Frequency synchronization often occurs in such systems when
the coupling between individual oscillators is strong enough that they start to oscillate at
the same frequency, even when their natural frequency is not homogeneous [117, 100]. Fre-
quency synchronization has attracted a large interest, in particular, the robustness of the
synchronous state has been studied from a variety of points of view. One may for instance
consider the linear stability of the synchronous state [99], the range of network parameters
where synchrony occurs [10, 26, 132], the volume of the basin of attraction of the synchronous
state [128, 86, 35], the in�uence of noise on the synchronous state, in particular how it can lead
to desynchronization or drive the system to another synchronous state [38, 60, 107, 61, 122, 62],
how disturbances spread across the network [69, 129, 94], or even how topological changes
affect synchrony [30, 113, 29]. Here, we investigate the robustness of the synchronous state
against external perturbations. For both local and ensemble-averaged perturbations on oscilla-
tors with identical dynamical parameters, we �nd that the robustness of the synchronous state
is given by a new family of topological indices based on the resistance distance [71, 121, 123].

The manuscript is organized as follows. Section 3.2 recalls the de�nition of the resistance
distance and generalizes it to graphs corresponding to powers of the Laplacian matrix. Section
3.3 describes our model of coupled oscillators, brie�y discusses synchronized states and
evaluates how they respond to external perturbations. Performance measures quantifying
this response are also introduced and calculated for quench perturbations. Sections 3.4
numerically illustrates the theory on different graphs for local and global vulnerabilities. An
analysis of Kirchhoff indices in both small-world and regular networks is also done. We
conclude in Section 3.5.

Resistance Distances, Centralities and Kirchhoff Indices

The resistance distance ›(1)
i j is a graph-theoretic metric with an intuitive physical interpreta-

tion [71]. To any graph, one associates an electrical network of resistors whose capacities are
given by the inverse of the edge weights. In this case, ›(1)

i j is the effective resistance between i
and j , i.e. the voltage that develops between i and j when a unit current is injected at i and
collected at j with no injection nor collection at any other node. The resistance distance can
be expressed with the network Laplacian matrix L as

›(1)
i j ˘ L�

i i ¯L�
j j ¡L�

i j ¡L�
j i , (3.1)
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where L� is the Moore-Penrose pseudo inverse of L. The resistance distance can be formulated
in a convenient way using eigenvectors ufi and eigenvalues ‚fi of L. It is given by [130, 29],

›(1)
i j ˘

X

fi‚2

(ufi,i ¡ ufi, j )2

‚fi
, (3.2)

where the zero-eigenvector of L corresponding to ‚1 ˘ 0 is omitted in the sum. The resistance
distance is a graph-theoretic distance metric because (i) ›(1)

i i ˘ 0, 8i , (ii) ›i j ‚ 0 8i , j , and (iii)
›(1)

i j ¯›(1)
j k ‚ ›(1)

i k , 8i , j ,k (triangle inequality) [71].

A measure of nodal centrality is given by the inverse of the average resistance distance from
any node k to all other network nodes,

C1(k) ˘

"

n¡1 X

j
›(1)

k j

#¡1

˘

"
X

fi‚2

u2
fi,k

‚fi
¯ n¡2Kf1

#¡1

. (3.3)

It is a closeness centrality in the usual sense [16], meaning in particular that large values of
C1(k) indicate nodes k that are central in the network according to the resistance distance
›(1)

i j . The second term in bracket on the right-hand-side of Eq. (3.3) is a graph topological
index known as the Kirchhoff index of the network and de�ned by [71],

Kf1 ˘
X

i˙ j
›(1)

i j ˘ n
X

fi‚2
‚¡1

fi , (3.4)

where the second equality follows from Eq. (3.2) [121].

Until now we have introduced global topological indices and local centralities expressed
through resistance distances of the original coupling network. In the upcoming sections, we
show how resistance distances naturally come out when quantifying robustness of network-
coupled oscillators, but that new distance metrics related to powers of the Laplacian matrix
also emerge. We therefore generalize Eqs. (3.1)�(3.4) to quantities corresponding to the pth

power Lp of the Laplacian matrix (p 2 N). This matrix is still a Laplacian matrix, and the
associated resistance distance is de�ned as

›(p)
i j ˘ (Lp )�

i i ¯ (Lp )�
j j ¡ (Lp )�

i j ¡ (Lp )�
j i . (3.5)

Still using the eigenvectors and eigenvalues of L we have,

›(p)
i j ˘

X

fi‚2

(ufi,i ¡ ufi, j )2

‚p
fi

. (3.6)

One can easily check that ›(p)
i j is still a graph-theoretic distance metric satisfying the properties

mentioned between Eqs. (3.2) and (3.3). We �nally have generalized resistance centralities
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[123]

Cp (k) ˘

"

n¡1 X

j
›(p)

k j

#¡1

˘

"
X

fi‚2

u2
fi,k

‚p
fi

¯ n¡2Kfp

#¡1

, (3.7)

and generalized Kirchhoff indices [121]

Kfp ˘
X

i˙ j
›(p)

i j ˘ n
X

fi‚2
‚¡p

fi . (3.8)

We note that generalized resistance distances can in principle be expressed as function of ›(1)
i j .

For instance one has

Kf2 ˘
n
4

X

i , j
›(1)

i j
2

¡
1
2

X

i , j ,k
›(1)

i j ›(1)
j k ¯

(Kf1)2

n
. (3.9)

Below we show how global robustness and local vulnerabilities quanti�ed with performances
measures can be expressed in terms of the resistance distance-based centralities and the
generalized Kirchhoff indices just introduced.

Synchronized oscillators under external perturbations

The Kuramoto model with inertia and its linearization

We consider a set of network-coupled oscillators de�ned by the following set of coupled
differential equations,

mi ¤µi ¯ di �µi ˘ Pi ¡
X

j
ai j sin(µi ¡µ j ) . (3.10)

Oscillators labeled i ˘ 1, ...,n sit on the n nodes of a weighted graph de�ned by the adjacency
matrix with elements ai j ‚ 0. They have compact angle coordinates µi 2 (¡…,…], natural
frequencies Pi /di

1 and inertia as well as damping parameters mi and di . For mi ˘ 0, Eq. (3.10)
gives the celebrated Kuramoto model on a complex network, for which it is known that when
the couplings are suf�ciently strong, a �nite fraction of, or all oscillators synchronize, i.e. with
�µi ¡ �µ j ˘ 0, depending on the distribution of the natural frequencies [77, 100, 67, 2]. Here, we
consider Pi de�ned on a bounded, real interval and set

P
i Pi ˘ 0 without loss of generality, so

that synchronous states have �µi ˘ 0, 8i .

Eq. (3.10) is governed by three sets of time scales. The �rst one consists of the inverse natural
frequencies di /Pi . The second one is given by ratios mi /di and corresponds to the relaxation
time of individual oscillators. Finally, the third one is given by the network relaxation times
di /‚fi de�ned by the damping parameters and the eigenvalues ‚fi of the weighted Laplacian

1By some abuse of language, we often refer to Pi as natural frequencies.

45



Chapter 3. Global Robustness vs. Local Vulnerabilities in Complex Synchronous
Networks

matrix de�ned in Eq. (5.3) below. The �rst of these sets essentially determines the synchronous
state, together with the coupling network. Depending on the other two sets of time scales,
perturbations are locally damped or they propagate across the network [121, 123, 94].

We consider a stable �xed-point solution µ(0) ˘ (µ(0)
1 , . . . ,µ(0)

n ) to Eq. (3.10) with unperturbed
natural frequencies P (0). We subject this state to a time-dependent perturbation P (t ) ˘ P (0) ¯
–P (t ), which renders angles time-dependent, µ(t ) ˘ µ(0) ¯–µ(t ). Linearizing the dynamics of
Eq. (3.10) about µ(0), one obtains

M – ¤µ ¯D – �µ ˘ –P (t ) ¡L({µ(0)
i })–µ , (3.11)

where we introduced inertia and damping matrices, M ˘ diag{mi } and D ˘ diag{di }, respec-
tively, and the weighted Laplacian matrix L({µ(0)

i }) with matrix elements

Li j ˘

(
¡ai j cos(µ(0)

i ¡µ(0)
j ) , i 6˘ j ,

P
k ai k cos(µ(0)

i ¡µ(0)
k ) , i ˘ j .

(3.12)

This Laplacian is minus the stability matrix of the linearized dynamics, and since we con-
sider a stable synchronous state, it is positive semide�nite, with a single eigenvalue ‚1 ˘ 0
with eigenvector u1 ˘ (1,1,1, ...1)/

p
n, and ‚fi ¨ 0, fi ˘ 2,3, ...n. From here on, we order the

Lyapunov exponents ‚fi in increasing order, i.e. ‚1 ˘ 0 ˙ ‚2 ˙ . . . ˙ ‚n .

Eq. (3.11) can be solved analytically through a spectral expansion if (i) both M and D commute
with L or (ii) if M¡1D ˘ °I. In case (i), the spectral expansion is over the eigenmodes of L, while
in case (ii) it is over the eigenmodes of M¡1/2LM¡1/2 [93, 29]. Here, we focus on case (i) with
mi ˘ m, di ˘ d 8i .

Expanding the angle deviations over the eigenmodes of L as –µ(t) ˘
P

fi cfi(t)ufi, Eq. (3.11)
leads to a Langevin equation,

m ¤cfi(t ) ¯ d �cfi(t ) ˘ –P (t ) ¢ ufi ¡‚fi cfi(t ) , (3.13)

whose general solution reads

cfi(t ) ˘m¡1 e¡(°¯¡fi)t/2
Z t

0
e¡fit1

Z t1

0
–P (t2) ¢ ufi e(°¡¡fi)t2/2 dt2dt1 , (3.14)

with ¡fi ˘
p

°2 ¡ 4‚fi/m and ° ˘ d/m. Similar expressions have been derived using the transfer
function formalism [93, 55] or within linear response [84, 121, 69]. When °2 ˙ 4‚fi/m, ¡fi 2 iR
and accordingly, j¡fij corresponds to the angular frequency of oscillations along the eigenmode
ufi of L. When on the other hand °2 ¨ 4‚fi/m, ¡fi 2 R and gives an additional damping beyond
°. From Eq. (5.10), angle and frequency deviations can be calculated as –µ(t) ˘

P
fi cfi(t)ufi.

The above described perturbation in the natural frequencies of Eq. (3.10) models physical
disturbances that can occur e.g. when a magnetic �eld is applied to an array of coupled
Josephson junctions [127] or when the injected or consumed powers change in a high voltage
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3.3. Synchronized oscillators under external perturbations

electric power grid [13].

Performance Measures

The perturbation –P (t ) moves the oscillators angles and frequencies away from their value at
synchrony and renders them time dependent. For not too strong, �nite-time perturbations,
they eventually relax to their synchronous values and to assess the magnitude of the excursion
away from synchrony, we introduce the following quadratic performance measures

P1(T ) ˘
X

i

Z T

0
j–µi (t ) ¡¢(t )j2dt , (3.15a)

P2(T ) ˘
X

i

Z T

0
j– �µi (t ) ¡ �¢(t )j2dt . (3.15b)

Fig. 3.1 shows the ratio between performance measure P1, de�ned in Eq. (3.15a), numerically
obtained by perturbing each node of graphs (a) and (e) shown in the inset. Even if the average
value of the performance measure is lower for graph (e), the latter can be more strongly
sensitive to certain local perturbations. Below we show that speci�c local vulnerabilities and
global averaged robustness are determined by nodal centralities and global topological indices
(orange). Similar measures have been discussed in the context of consensus algorithms [7, 54],
electric power systems [102, 93, 110] and coupled oscillators systems [121, 123]. The results
we are about to present directly connect these performance measures to resistance-distance
based centralities and Kirchhoff indices introduced in Section 3.2. While similar connections
may have been inferred from some of these works (in particular Refs. [93, 110, 121]), to the
best of our knowledge, it was �rst unambiguously stated in Ref. [123].

Because synchronous states are de�ned modulo any homogeneous angle shift, they are
unaffected by the transformation µ(0)

i ! µ(0)
i ¯C . Accordingly, only angle shifts with

P
i –µi (t ) ˘

0 matter, which is incorporated in the de�nitions of P1,2 by subtracting averages ¢(t) ˘
n¡1 P

j –µ j (t ) and �¢(t ) ˘ n¡1 P
j – �µ j (t ). If the perturbation is not too strong and �nite in time,

both P1 and P2 are �nite even for T ! 1. Low values for P 1
1,2 · P1,2(T ! 1) indicate then

that the system absorbs the perturbation with little �uctuations, while large values indicate a
temporary fragmentation of the system into independent pieces � qualitatively speaking, P 1

1,2
measures the coherence of the synchronous state [7].

Using the spectral expansion with coef�cients given in Eq. (5.10), the performance measures
of Eqs. (3.15) read, in our case of homogeneous inertia and damping coef�cients

P1(T ) ˘
X

fi‚2

Z T

0
c2

fi(t )dt , (3.16a)

P2(T ) ˘
X

fi‚2

Z T

0
�c2
fi(t )dt . (3.16b)

Performance measures depend on the perturbation vector –P (t ) ˘ –P0 f (t ), which may have
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Figure 3.1 � Ratio of the performance measures P1 for graph (a) vs. (e) of Fig. 3.2 (shown in
the insets), for a quench perturbation of magnitude –P0 ˘ 0.01 and duration °¿0 ˘ 500 on
node k ˘ 1,2,3, . . .20 (see text). On average, graph (e) is four times more robust to external
perturbations than graph (a) (blue dashed line). However, some nodes of graph (a) can be more
robust than those of graph (e) (red crosses correspond to quench perturbation applied on the
red nodes shown in the inset). Both speci�c local vulnerabilities (crosses) and global averaged
robustness (blue dashed lines) are well predicted by combinations of local centralities, and
global topological indices (orange solid line, see text).

different time dependences f (t ) � such as, for instance, noisy �uctuations or instantaneous,
Dirac-delta perturbations � and different geographical dependences encoded in –P0. In this
manuscript we consider quenches where f (t) vanishes outside some time interval, inside
which it is constant but nonzero. In the next section we calculate performance measures for
general perturbation vectors –P0 for such quenches. As for geographical dependences, we then
consider two cases of (i) nodal vulnerabilities, with local perturbations –P0 ˘ (0, ...,–P0,k , ...,0)
and (ii) global robustness, where performance measures are averaged over all possible loca-
tions k for the perturbation.
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3.3. Synchronized oscillators under external perturbations

Quench Perturbation

We compute both performance measures P1,2 for a quench perturbation –P (t ) ˘ –P0 £(t )£(¿0¡
t ) with the Heaviside function £(t ) and a perturbation vector –P0 encoding the geographical
distribution of the perturbation. The duration ¿0 of the quench allows to explore the different
time scales of the system and we show below that P1,2 varies signi�cantly depending on ¿0.
Using Eq. (5.10), Eqs.(3.15) give

P 1
1 ˘

m
8°

X

fi‚2

(–P0 ¢ ufi)2

¡fi‚3
fi

h
2¡fi(4°¿0‚fi/m ¡ 3°2 ¡¡2

fi) ¯ (°¯¡fi)3e¡¿0
(°¡¡fi)

2 ¡ (°¡¡fi)3e¡¿0
(°¯¡fi)

2

i
,

P 1
2 ˘

1
2d

X

fi‚2

(–P0 ¢ ufi)2

¡fi‚fi

h
2¡fi ¡ (°¯¡fi)e¡ ¿0(°¡¡fi)

2 ¯ (°¡¡fi)e¡ ¿0(°¯¡fi)
2

i
.

(3.17a)

It is easily checked that P 1
1,2 2 R in both cases °2 ¨ 4‚fi/m (with ¡fi 2 R) and °2 ˙ 4‚fi/m (with

¡fi 2 iR).

Both performance measures are given by a spectral sum of terms corresponding to the eigen-
modes of the network Laplacian matrix L. Each term in this sum depends on the scalar
product of the perturbation vector –P0 with the eigenmodes ufi of L times a mode-dependent
factor. The latter is an almost always decreasing function of the eigenvalues ‚fi. Therefore,
Eqs. (3.17) suggest that the largest excursion can be obtained by overlapping –P0 with few of
the lowest-lying eigenmodes of L, in particular u2, the so-called Fiedler mode of the network
[46].

To get more insight into Eqs. (3.17), we compute their two asymptotic limits of long and short
¿0. For perturbations with very short duration i.e. ¿0 ¿ m/d , (°§¡fi)¡1, we have,

P 1
1 ˘

¿2
0

2d

X

fi‚2

(–P0 ¢ ufi)2

‚fi
, (3.18a)

P 1
2 ˘

¿2
0

2md

X

fi‚2
(–P0 ¢ ufi)2 . (3.18b)

Each term in the sum over modes depends on ‚fi for P 1
1 but not for P 1

2 . Consequently, P 1
1

depends explicitly on the location of the perturbation, while there is no such dependence for
P 1

2 , which depends only on the squared norm of the perturbation vector –P0 orthogonal
to u1. This re�ects the fact that in the regime of short ¿0, the perturbation does not act long
enough to change the kinetic energy of inertiafull oscillators, which P 1

2 essentially measures.
Consequently, the perturbation is quickly damped locally, with little dependence on its loca-
tion in the situation we consider of homogeneously distributed inertia. We note that similar
topology-independent results were obtained for instantaneous, Dirac-delta perturbations [6].
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In the other limit ¿0 À m/d , (°§¡fi)¡1, the performance measures read

P 1
1 ˘ ¿0

X

fi‚2

(–P0 ¢ ufi)2

‚2
fi

, (3.19a)

P 1
2 ˘ d¡1 X

fi‚2

(–P0 ¢ ufi)2

‚fi
. (3.19b)

In this case of a long-lasting perturbation, both P 1
1 and P 1

2 depend on the location of the
perturbation. Furthermore, and perhaps more importantly, the inertia affects neither P 1

1
nor P 1

2 . This is so since, for long quenches, oscillators have the time to synchronize at a
new frequency with zero angular acceleration before the perturbation is over. We further
note that ¿0 no longer appears in P 1

2 , since the latter considers deviations orthogonal to u1.
Consequently, the whole time spent by the oscillators at the new frequency does not contribute
to P 1

2 . Most importantly, Eqs. (3.18) and (3.19) suggest that in both asymptotic limits of short
and long perturbations, P 1

1,2 /
P

fi‚2(–P0 ¢ ufi)2/‚p
fi with p ˘ 0,1,2. That result was already

hinted at in Ref. [121] for inertialess oscillators and various types of perturbations. Below
we show how this dependence leads to performance measures depending on the resistance
distances, centralities and Kirchhoff indices introduced in Section 3.2.

Eqs. (3.17) and their asymptotic limits, Eqs. (3.18) and (3.19), give the performance measures
P 1

1,2 for any perturbation vector –P0. We next discuss two important cases of (i) a single-
node perturbation, –P0,i ˘ –P0–i k , where large values of the node-dependent performance
measures P 1

1,2 ! P 1
1,2(k) identify local vulnerabilities and (ii) averaged perturbation over

ensemble of homogeneously distributed perturbation vectors –P0, where large values of
P 1

1,2 ! hP 1
1,2i indicate globally fragile networks.

Speci�c Local Vulnerabilities

To assess local vulnerabilities of the coupled oscillators, we apply a quench perturbation on a
single node. The vulnerability of node k is then given by Eqs. (3.17) with the components of
the perturbation vector given by –P0,i ˘ –P0–i k . In the limit of short duration of perturbation,
¿0 ¿ m/d , (°§¡fi)¡1, one obtains

P 1
1 (k) ˘

–P 2
0 ¿2

0

2d

X

fi‚2

u2
fi,k

‚fi
˘

–P 2
0 ¿2

0

2d
[C ¡1

1 (k) ¡ n¡2Kf1] , (3.20a)

P 1
2 (k) ˘

–P 2
0 ¿2

0

2md

X

fi‚2
u2

fi,k ˘
–P 2

0 ¿2
0

2md
(n ¡ 1)

n
, (3.20b)

where the right-hand side of Eq. (3.20a) directly follows from Eq. (3.3). For a perturbation on
node k, P 1

1 (k) is expressed in terms of the centrality, C1(k), a local nodal descriptor, and the
Kirchhoff index Kf1, a global network descriptor. Consequently, the most vulnerable nodes
in a given network, according to P 1

1 (k), are identi�ed by their resistance-distance based
centrality C1(k).
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In the other limit of long perturbations, ¿0 À m/d , (°§¡fi)¡1, Eqs. (3.19) give

P 1
1 (k) ˘ –P 2

0 ¿0
X

fi‚2

u2
fi,k

‚2
fi

˘ –P 2
0 ¿0[C ¡1

2 (k) ¡ n¡2Kf2] , (3.21a)

P 1
2 (k) ˘

–P 2
0

d

X

fi‚2

u2
fi,k

‚fi
˘

–P 2
0

d
[C ¡1

1 (k) ¡ n¡2Kf1] . (3.21b)

This time P 1
1 is given by the higher order centrality C2(k) and Kirchhoff index Kf2.

When considering a given, �xed network, Eqs. (3.20) and (3.21) show that perturbations on
the most central nodes � as measured by either centrality C1(k) or C2(k) � give the smallest
overall responses, except when considering P 1

2 (k) for a short-time perturbation. In that latter
case, the response is homogeneous and perturbing any node leads to the same performance
measure P 1

2 (k). When comparing two nodes with similar centrality on two different networks,
on the other hand, Eqs. (3.20) and (3.21) indicate that the largest response occurs on the
network with smallest generalized Kirchhoff index � except again for P 1

2 (k) and a short-time
perturbation. We show below that the overall network robustness is actually given by these
generalized Kirchhoff indices, which makes this observation quite counterintuitive: when
perturbing two nodes of equal centrality on two different networks, the largest response is
actually recorded on the overall more robust network ! We will come back to this point below.

Averaged Global Robustness

We next assess the global robustness of synchrony in a given network, by averaging Eqs. (3.17)
over an homogeneously distributed ensemble of perturbation vectors de�ned by h–P0,i –P0, j i ˘
–i j h–P 2

0 i [121]. Averaging Eqs. (3.17) gives, in the limit of short perturbations, ¿0 ¿ m/d ,
(°§¡fi)¡1

hP 1
1 i ˘

h–P 2
0 i¿2

0

2d

X

fi‚2
‚¡1

fi ˘
h–P 2

0 i¿2
0

2nd
Kf1 , (3.22a)

hP 1
2 i ˘

h–P 2
0 i¿2

0

2md
n ¡ 1

n
. (3.22b)

We see that hP 1
1 i is given by the Kirchhoff index Kf1 which is proportional to the network’s

average resistance distance ›(1)
i j [see Eq. (3.4)]. Similarly to the local vulnerability in this limit,

hP 1
2 i depends on the network only marginally through the number of nodes.

In the other limit ¿0 À m/d , (°§¡fi)¡1, Eqs. (3.19) give

hP 1
1 i ˘ h–P 2

0 i¿0
X

fi‚2
‚¡2

fi ˘
h–P 2

0 i¿0

n
Kf2 , (3.23a)

hP 1
2 i ˘

h–P 2
0 i

d

X

fi‚2
‚¡1

fi ˘
h–P 2

0 i
nd

Kf1 . (3.23b)
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Figure 3.2 � Six networks with n ˘ 20 nodes obtained by the rewiring procedure of Ref. [126],
starting from a cyclic graph and rewiring every edge of the network with a probability pr ˘ 0.15
(a), pr ˘ 0.3 (b), pr ˘ 0.45 (c), pr ˘ 0.6 (d), pr ˘ 0.75 (e) and pr ˘ 0.9 (f). The node numbering
used in Fig. 3.3 is indicated in panel (a).

Both performance measures depend on generalized Kirchhoff indices. Quite remarkably and
as for local vulnerabilities, the only average performance measure that depends on inertia is
hP 1

2 i in the short ¿0 limit.

The results of Sections 3.3.4 and 3.3.5 can be easily extended to other types of perturbations.
For inertialess oscillators, Ref. [121] reached similar conclusions, that performance measures
can be expressed in terms of resistance centralities and Kirchhoff indices, for several other
types of perturbations. In the next Section, we numerically con�rm the validity of the analytical
theory presented in this Section.

Numerical Results

Local Vulnerabilities and Resistance Centralities

We numerically investigate local vulnerabilities by perturbing individual nodes with the
quench perturbation discussed above. Our theory applies to network of any geometry with
any number n of nodes. However in order to better visualize the agreement between analytical
predictions and numerical results we restrict ourselves to relatively small graphs with n ˘ 20
nodes of the kind shown in Fig. 3.2.

We check Eqs. (3.17) for the model de�ned in Eq. (3.10) with bi j ˘ 1 on the edge of the
graph considered and ai j ˘ 0 otherwise, mi · m ˘ 1 and di · d ˘ 1. We numerically time-
evolve Eq. (3.10) with a fourth-order Runge-Kutta method, following a perturbation –Pi (t ) ˘
–P0–i k £(t)£(¿0 ¡ t) away from P (0) ˘ 0 and starting from the corresponding synchronous
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Figure 3.3 � Performances measures P1 (left) and P2 (right) for the graphs of Fig. 3.2a (top),
Fig. 3.2c, (middle), Fig. 3.2e (bottom) and a quench perturbation of magnitude –P0 ˘ 0.01
on node k. Numerical results (circles) and analytical Eqs. (3.17) (solid lines) are plotted for
different durations of perturbation °¿0 ˘ 0.5 (black), 1 (blue), 10 (red), 100 (green). The
asymptotic values of short and long ¿0 given in Eqs. (3.20) (dotted line) and (3.21) (dashed
line) are shown, vertically shifted by an arbitrary amount for clarity. The node numbering is
given in Fig. 3.2a.
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Figure 3.4 � Resistance centralities C1(k) (top) and C2(k) (bottom), given in Eqs. (3.3) and (3.7)
respectively, for the six graphs of Fig. 3.2.

state µ(0) ˘ 0. Fig. 3.3 shows that the theory of Eqs. (3.17) is in perfect agreement with numerical
results. In particular, one clearly sees the crossover from [C ¡1

1 (k)¡n¡2Kf1] to [C ¡1
2 (k)¡n¡2Kf2]

for P 1
1 (dotted to dashed lines on the left panels) and from a constant to [C ¡1

1 (k) ¡ n¡2Kf1]
(dotted to dashed line on the right panels) for P 1

2 , as ¿0 increases. This fully con�rms our
theoretical predictions, Eqs. (3.20)-(3.21). We conclude that, generally speaking (i.e. except
for P 1

2 and short perturbations), the most central nodes are the most robust. They are
connected by multiple paths to the rest of the network, and when they are perturbed, the
disturbance quickly diffuses across the network with small angle differences. In contrast, the
most peripheral nodes such as dead ends have only few paths connecting them to the bulk of
the network and the disturbance diffuses across the network with large angle differences. It
has been numerically found that dead ends undermine grid stability [87], and our results shed
some analytical light on that observation.

We further illustrate this strong connection between resistance centralities and response of
the system. We show in Fig. 4.6 resistance centralities C1(k) and C2(k) for the six graphs of
Fig. 3.2. One sees that C1(k) and C2(k) tend to become higher while going from graph (a) to (f)
indicating that graphs with more rewired edges (and thus with more long-range couplings)
have shorter distances between nodes and thus lower Kirchhoff indices. Interestingly, several
nodes with a high centrality C1(k) do not necessarily have a high centrality C2(k), and vice-
versa. This is illustrated in the C1(k) vs. C2(k) scatterplot of Fig. 3.5. Still there is an overall
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Figure 3.5 � Comparison between C1(k) and C2(k) for the six graphs of Fig. 3.2 (see inset).

positive correlation between C1(k) vs. C2(k), quanti�ed by a Pearson correlation parameter
cov[C1(k),C2(k)]/(rms[C1(k)]rms[C2(k)]) ˘ 0.87. We then show in Fig. 3.6 the time-evolution
of angles and frequencies following a local quench perturbation on two different nodes of
graph (f) with very different resistance centralities. One clearly sees that for a perturbed node
with low resistance centrality (Fig. 3.6, top), angles and frequencies spread more during the
perturbation than for a node with higher centrality (Fig. 3.6, bottom).

Generally speaking, networks with higher rewiring probabilities have smaller global topolog-
ical indices Kf1 and Kf2 and thus smaller hP 1

1,2i according to our theory. This is con�rmed
numerically in the four left panels in Fig. 3.7, where we apply the same quench perturbation
on nodes with resistance centralities C1(k) close to their median value in the corresponding
graph. One observes that angles and frequencies spread more and take more time to return to
the initial �xed point in the graph with higher Kf1 and Kf2 (�rst and third rows) compared to
the one with more rewired edges (second and fourth rows).
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Figure 3.6 � Time-evolution of angles (left) and frequencies (right) following a quench per-
turbation applied on node 6 (top panels) and 11 (bottom panels) of graph (f) in Fig. 3.2 with
°¿0 ˘ 50. The trajectory of the perturbed oscillator is shown in red. Angles and frequencies
spread more when the perturbation is applied on node 6 than on node 11, in agreement with
predictions of Eqs. (3.21) since node 6 has the smallest, node 11 the largest centrality in this
graph.

While this is a rather general rule, it does not forbid exceptions. As a matter of fact, speci�c
perturbations can lead to higher response in a network with lower Kirchhoff index than in a
network with higher Kirchhoff index. Such an exception is illustrated in the four right panels
in Fig. 3.7, where the same quench perturbation is applied on nodes with similar resistance
centralities C2(k) but belonging to graphs with very different Kirchhoff indices (see insets
of Fig. 3.7). As expected from Eqs. (3.21), if two nodes on different networks have the same
centralities, then, a perturbation applied on the one in the network with lower Kirchhoff index
produces the largest response. Another illustration of this effect is given in Fig. 3.1, where
graph (e) is more robust than graph (a) on average (dashed lines). But if we compare the
response to speci�c local perturbations, some nodes of graph (a) are more robust than those of
graph (e) (red crosses). Both the generic and the exceptional behaviors are accurately captured
by our theory.
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Figure 3.7 � Trajectories of angles and phases for the graphs of Fig. 3.2 with pr ˘ 0.15 (�rst
and third rows) and pr ˘ 0.9 (second and fourth rows) obtained by numerically time-evolving
Eq. (3.10) for the same quench perturbation with °¿0 ˘ 50 applied on the node colored in
red in the insets. In the four left panels, perturbed nodes are close to median value of C2(k),
respectively in graph with pr ˘ 0.15 (�rst and third rows) and pr ˘ 0.9 (second and fourth
rows). In the four right panels, perturbed nodes are the most (�rst and third rows) and least
(second and fourth rows) central ones according to C2(k), respectively in graph with pr ˘ 0.15
and pr ˘ 0.9.
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Global Robustness and Generalized Kirchhoff Indices

We next investigate global robustness by averaging performance measures over an ensemble of
perturbation vectors located on a single node, –P0 ˘ (0, ..,–P0,k ,0, ...) with k ˘ 1, ...,n. Fig. 3.8
compares the resulting numerical averages hP 1

1,2i with the average of the theoretical prediction
of Eqs. (3.17). Numerics and theory agree well. In particular the left panel con�rms nicely
the crossover between Kf1 and Kf2 predicted by Eqs. (3.22a) and (3.23a). A similar behavior
is visible in the right panel, where hP 1

2 i does not depend on the network topology for short
duration of perturbation (black and blue lines and symbols) but crosses over to Kf1 as ¿0

increases, as predicted by Eqs. (3.22b) and (3.23b). We �nally note that networks with high
Kf1 do not necessarily have a high Kf2, and vice-versa. This is illustrated in Fig. 3.8 where the
chosen network with pr ˘ 0.15 has a higher Kf2 but a lower Kf1 than the chosen network with
pr ˘ 0.3. Below we analyze in more details Kf1,2 in randomly rewired networks.

Figure 3.8 � Averaged Performances measures hP 1
1 i, hP 1

2 i for the graphs of Fig. 3.2 obtained
numerically (circles) and predicted analytically, Eqs. (3.17) (solid lines) for perturbations with
°¿0 ˘ 0.5 (black), 1 (blue), 10 (red), 100 (green). The asymptotic values of short and long ¿0
given in Eqs. (3.22) (dotted line) and (3.23) (dashed line) are shown, vertically shifted by an
arbitrary amount for clarity.

Generalized Kirchhoff Indices in Small-World Networks

The results obtained above relate local vulnerabilities to nodal centralities and global net-
work robustness to generalized Kirchhoff indices. This connection is powerful: it gives a
vulnerability ranking of nodes and provides robustness assessment based on well-de�ned,
easily calculated network descriptors. To gain qualitative insight on what favors robustness
in a graph, we investigate the behavior of the Kirchhoff indices for Watts-Strogatz, randomly
rewired networks. Following Ref. [126], we consider initially regular, circular graphs where
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nodes are coupled to their nearest, second-nearest aso. up to their 10th neighbors. Each edge
in the corresponding coupling network is then rewired with probability p. Fig. 3.9 compares
the standard measures of "nearest-neighborness" of average geodesic distance l and clustering
coef�cient C l with the generalized Kirchhoff indices Kf1 and Kf2, as a function of p.

Figure 3.9 � Left panel: clustering coef�cient C l , average geodesic distance l and generalized
Kirchhoff indices Kf1 and Kf2, as a function of the rewiring probability pr for Strogatz-Watts
rewired networks [126]. Each data point corresponds to an average over 30 realizations of
randomly rewired graphs, obtained from an initial cyclic graph with n ˘ 1000 nodes and
nearest to 10th- neighbor coupling, where each edge is randomly rewired with a probability
pr (parameters chosen similar as in Ref. [126], such that the graph remains connected while
rewiring and is still sparse). Right panel: ratio of the Kirchhoff indices and of clustering
coef�cient vs. average geodesic distance. Small-world network are easily identi�ed by the
steepest slope of the orange line.

Both Kirchhoff indices drop, roughly following l , as p is increased, with Kf2 decreasing sig-
ni�cantly faster than Kf1 and l . Traditionnally, the "small-world" behavior occurs around
pr ˘ 0.01, where l is signi�cantly smaller than its initial value, while C l has not yet changed
much. In that region, Kf1 has been reduced to » 40% of its initial value, while Kf2 reaches
only few percents of its initial value. Accordingly, small-world networks are signi�cantly more
robust to external perturbations than regular networks, particularly when considering P 1

1 for
long quenches. Only a fraction of edges need to be rewired to achieve a level of robustness
comparable to that of random networks. As a side-remark, we note that the ratio of Kirchhoff
indices provides for a clear identi�cation of small-world networks, which correspond to values
of pr where Kf1(pr )/Kf2(pr ) is fast increasing with pr .
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Regular Networks

We �nally comment on regular networks. In such networks, all the nodes are equivalent
and therefore global robustness is equivalent to local vulnerability, P 1

1,2(k) ˘ hP 1
1,2i, 8k, fur-

thermore, Kirchhoff indices can be calculated analytically. The Laplacian matrix can be
diagonalized with a Fourier transform, and its spectrum is given by

‚fi ˘ 4 ¡ 2cos(kfi) ¡ 2cos(kfiq) , fi ˘ 1, ...,n, (3.24)

with kfi ˘ 2…(fi¡ 1)/n. Kirchhoff indices Eq. (3.8) are then given by,

Kfp ˘ n
X

fi‚2
[4 ¡ 2cos(kfi) ¡ 2cos(kfiq)]¡p . (3.25)

Fig. 3.10 shows Kf1 and Kf2 for such regular networks with n ˘ 50 nodes. When extending the
coupling range q , Kirchhoff indices are generally decreasing, indicating the standard trend
that longer-range couplings reduce centralities. However, for some values q ˘ 10,17,24 equal
or close to integer divisors of n, Kirchhoff indices suddenly become larger. This is so, since
then, paths made of few long-range interactions form either closed or almost closed loops (see
the inset of Fig. 3.10 for q ˘ 17,24), which do not reduce the geodesic distance between many
pairs of nodes, compared to long range coupling with n/q not integer (e.g. q ˘ 19 in Fig. 3.10).
Consequently, graphs that may appear similar, such as those with q ˘ 17 and q ˘ 19 or with
q ˘ 23 and q ˘ 24 may exhibit Kirchhoff indices differing by factors of 2-4 or even more. This
illustrates how assessing global robustness is hard to do from a network’s general appearance
and/or from arguments solely based on the existence of long-range couplings.

Conclusion

Building up on earlier works [7, 54, 102, 93, 110, 121, 123], we have investigated the response
under external perturbations of network-coupled dynamical systems initially in a stable
synchronous state. We proposed to assess network robustness and identify nodal vulnerabili-
ties through quadratic performance metrics quantifying the magnitude of the perturbation-
induced transient excursion away from the synchronous state. As we reported earlier for
�rst-order oscillators [121], we found that the response of inertiaful, second-order oscillators
depends on the overlap between the perturbation vector and the eigenmodes of the weighted
Laplacian. In particular, the set of nodes located on the slowest eigenmode corresponding to
the smallest eigenvalue produces the largest excursions when perturbed. Considering distur-
bances localized on a single node we found that, oscillators which, once perturbed, induce
the largest transient excursion are the ones with smallest resistance centralities. Extending
the results of Ref. [121] to second-order oscillators, we found that global robustness, assessed
by averaging performance measures over ergodic ensembles of perturbation vectors, is also
given by generalized Kirchhoff indices. A network can then be made more robust to perturba-
tions by minimizing its average resistance distances, for instance by introducing long-range
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Figure 3.10 � Generalized Kirchhoff indices Kf1 (green) and Kf2 (purple) given in Eq. (3.25), for
a cyclic network with n ˘ 50 nodes with nearest and q th- neighbor coupling. The inset sketches
the model for q ˘ 17, 19 and 24 and with one path involving q th range coupling starting from
node 1 (red). The addition of the q th- neighbor coupling does not reduce geodesic distance
between the reference node (red) and the set of nodes colored in blue.

edges. Quite remarkably, except for P2 and short time perturbation, asymptotic behaviors
of performance measures in either limit of long or short perturbations do not depend on the
inertia of the oscillators.

Our �ndings are rather general. Together with Refs. [121, 123], they make it clear that, almost
regardless of the presence of inertia, and of the type of perturbation chosen, quadratic perfor-
mance measures are given by the generalized resistance distance-based centralities or, once
averaged over ergodic ensembles of perturbations, by the generalized Kirchhoff indices that
we introduced in Section 3.2. These local and global network characteristics therefore provide
well-de�ned, numerically easy to calculate robustness descriptors and local vulnerability
indicators.

Further studies could consider the effect of spatially correlated perturbations and go beyond
the assumption of homogeneous inertia and damping. Moreover, generalized resistance
centralities and Kirchhoff indices could be investigated with different network generating
algorithms.
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4 The Key Player Problem in Com-
plex Oscillator Networks and Electric
Power Grids: Resistance Centralities
Identify Local Vulnerabilities

Chapter 4 is a preprint version of an article published in Science Advances:
M. Tyloo, L. Pagnier, P. Jacquod, Science Advances 5(11):eaaw8359 (2019) [123].

63



Chapter 4. The Key Player Problem in Complex Oscillator Networks and Electric Power
Grids: Resistance Centralities Identify Local Vulnerabilities

Identifying key players in a set of coupled individual systems is a fundamental problem in
network theory [5, 19, 47]. Its origin can be traced back to social sciences and the problem
led to ranking algorithms from most to least important individual systems based on graph
theoretic centralities [16]. Coupled dynamical systems differ from social networks in that, �rst,
they are characterized by degrees of freedom with a deterministic dynamics and second the
coupling between individual systems is a well-de�ned function of those degrees of freedom.
One therefore expects the resulting coupled dynamics, and not only the network topology, to
also determine the key players - the most important individual dynamical systems, in a prede-
�ned sense. Here, we investigate synchronizable network-coupled dynamical systems such as
high voltage electric power grids and coupled oscillators on complex networks. We de�ne key
players as those network nodes which, once perturbed by a local noisy disturbance, generate
the largest overall transient excursion away from synchrony. A spectral decomposition of the
network coupling matrix leads to an elegant, concise, yet accurate solution to this identi�-
cation problem. For inertialess oscillators, or when the inertia and damping parameters are
either constant or with constant ratio, we show that, when the internodal coupling matrix
is Laplacian, these key players are peripheral in the sense of a centrality measure de�ned
from effective resistance distances. For linearly coupled dynamical systems such as weakly
loaded electric power grids or consensus algorithms, the nodal ranking is ef�ciently obtained
through a single Laplacian matrix inversion, regardless of the operational synchronous state.
We call the resulting ranking index LRank. For heavily loaded electric power grids or cou-
pled oscillators systems closer to the transition to synchrony, nonlinearities render the nodal
ranking dependent on the operational synchronous state. In this case a weighted Laplacian
matrix inversion gives another ranking index, which we call WLRank. Quite surprisingly, we
�nd that LRank provides a faithful ranking even for well developed coupling nonlinearities,
corresponding to oscillator angle differences up to ¢µ . 40o approximately. Numerical results
further establish the validity of these results for more general distributions with spatially
varying inertia and damping parameters.

Introduction

Because of growing electric power demand, increasing dif�culties with building new lines
and the emergence of intermittent new renewable energy sources, electric power systems are
more often operated closer to their maximal capacity [74, 1]. Accordingly, their operating state,
its robustness against potential disturbances and its local vulnerabilities need to be assessed
more frequently and precisely. Furthermore, because electricity markets become more and
more integrated, it is necessary to perform these assessments over geographically larger areas.
Grid reliability is commonly assessed against n ¡ 1 feasibility, transient stability and voltage
stability, by which one means that a grid is considered reliable if (i) it still has an acceptable
operating state after any one of its n components fails, (ii) that acceptable state is reached
from the original state following the transient dynamics generated by the component failure
and (iii) the new operating state is robust against further changes in operating conditions
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such as changes in power productions and loads. This n ¡ 1 contingency assessment is much
harder to implement in real-time for a power grid loaded close to its capacity where the
differential equations governing its dynamics become nonlinear � the fast, standardly used
linear approximation breaks down as the grid is more and more heavily loaded. Nonlinear
assessment algorithms have signi�cantly longer runtimes, which makes them of little use for
short-time evaluations. In worst cases, they sometimes even do not converge. In short, heavily
loaded grids need more frequent, more precise reliability assessments which are however
harder to obtain, precisely because the loads are closer to the grid capacities.

Developing real-time procedures for n ¡ 1 contingency assessment requires new, innovative
algorithms. One appealling avenue is to optimize contingency ranking [47] to try and identify
a subset of ns ˙ n grid components containing all the potentially critical components. The
n ¡ 1 contingency assessment may then focus on that subset only, with a signi�cant gain in
runtime if ns ¿ n. Identifying such a subset requires a ranking algorithm for grid components,
following some well-chosen criterion. Procedures of this kind have been developed in network
models for social and computer sciences, biology and other �elds, in the context of the
historical and fundamental problem of identifying the key players [5, 19, 112, 88]. They may be
for instance the players who, once removed, lead to the biggest changes in the other player’s
activity in game theory, or to the biggest structural change in a social network. That problem
has been addressed with the introduction of graph theoretic centrality measures [16, 18]
which order nodes from the most "central" to the most "peripheral" � in a sense that they
themselves de�ne. A plethora of centrality indices have been introduced and discussed in the
literature on network theory [16, 18], leading up to PageRank [23]. The latter ranks nodes in a
network according to the stationary probability distribution of a Markov chain on the network,
accordingly it gives a meaningful ranking of websites under the reasonable assumption that
websur�ng is a random process. Their computational ef�ciency makes PageRank, as well
as other purely graph theoretic indicators very attractive to identify key players on complex
networks. It is thus quite tempting to apply purely graph theoretic methods to identify fast
and reliably key players in network-coupled dynamical systems.

Processes such as web crawling for information retrieval are essentially random diffusive walks
on a complex network, with no physical conservation law beyond the conservation of prob-
ability. The situation is similar for disease [70] or rumor [20] spreading, and for community
formation [52] where graph theoretic concepts of index, centrality, betweenness, coreness
and so forth have been successfully applied to identify tightly-bound communities. Coupled
dynamical systems such as complex supply networks [8], electric power grids [83], consensus
algorithm networks [81] or more generally network-coupled oscillators [77, 2] are however fun-
damentally different. There, the randomness of motion on the network giving e.g. the Markov
chain at the core of PageRank is replaced by a deterministic dynamics supplemented by physi-
cal conservation laws that cannot be neglected. Pure or partially extended graph theoretic
methods have been applied in vulnerability investigations of electric power grids [17, 106, 59],
and investigations of cascades of failures in coupled communication and electric power net-
works [24, 11]. They have however been partially or totally invalidated by investigations on
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Figure 4.1 � Comparison between theoretical predictions and numerical results for both
performance measures P1 and P2 de�ned in Eqs. (4.3). Each point corresponds to a noisy
disturbance on a single node of the European electric power grid sketched in Fig. 4.2 (see
Appendix, 4.5) and governed by Eq. (4.1) with constant inertia and damping parameters. The
time-dependent disturbance –Pi (t ) is de�ned by an Ornstein-Uhlenbeck noise of magnitude
–P0 ˘ 1 and correlation time °¿0 ˘ 4 ¢10¡5 (red crosses), 4 ¢10¡4 (cyan), 4 ¢10¡3 (green), 4 ¢10¡2

(purple), 4 ¢10¡1 (black) and 4 (blue). Time scales are de�ned by the ratio of damping to inertia
parameters ° ˘ di /mi ˘ 0.4s¡1 which is assumed constant with di ˘ 0.02s. The insets show P1
and P2 as a function of the resistance distance-based graph theoretic predictions of Eqs. (4.22)
valid in both limits of very large and very short noise correlation time ¿0. Not shown is the
limit of short ¿0 for P2, which gives a node-independent result, Eq. (4.22b).

more precise models of electric power transmission that take fundamental physical laws into
account (in this case, Ohm’s and Kirchhoff’s laws) [63, 72]. It is therefore doubtful that purely
topological graph theoretic descriptors are able to identify the potentially critical components
in deterministic, network-coupled dynamical systems. Purely graph-theoretic approaches
need to be extended to account for physical laws [17]. The in�uence of the dynamics on
transient performance for regular graphs on d-dimensional tori has been emphasized in
Ref. [7].

Here, we give an elegant solution to the key player problem for a family of deterministic,
network-coupled dynamical systems related to the Kuramoto model [77, 2]. While we focus
mostly on high voltage electric power grids whose swing dynamics, under the lossless line
approximation, is given by a second-order version of the Kuramoto model [83, 40], we show
that our approach also applies to other, generic models of network-coupled oscillators. Key
players in such systems can be de�ned in various ways. For instance, they can be identi�ed
by an optimal geographical distribution of system parameters such as inertia, damping or
natural frequencies, or alternatively as those whose removal leads to the biggest change in
operating state. In this article we de�ne key players as those nodes where a local disturbance

66



4.2. Results

leads to the largest short-time transient network response. In the context of electric power
grids, transient stability is the ability of the grid to maintain synchrony under relatively large
disturbances such as loss or �uctuations of power generation or of a large load [76]. If under
such a fault, the system remains in the vicinity of its original state, it has maintained synchrony.
There are different measures to quantify the magnitude of the transient excursion, such
as nadir and maximal rate of change of the network-averaged frequency [93, 55] or other
dynamical quantities such as network susceptibilities [84] and the wave dynamics following
disturbances [118]. Here, we quantify the total transient excursion through performance
measures that are time-integrated quadratic forms in the system’s degrees of freedom (see
Appendix, 4.5). Transient excursions typically last ten to twenty seconds in large, continental
power grids, which sets the time scales we are interested in.

Anticipating on results to come, Fig. 4.1 illustrates the excellent agreement between analytical
theory and numerical calculations for such performance measures. Particularly interesting
is that in both asymptotic limits of quickly and slowly decorrelating noisy disturbance, the
performance measures are simply expressed in terms of the resistance centrality [116, 21],
which is a variation of the closeness centrality [16] based on resistance distances [71]. This is
shown in the insets of Fig. 4.1. Our main �nding is that the resistance centrality is the relevant
quantity to construct ranking algorithms in network-coupled dynamical systems.

Results

We consider network-coupled dynamical systems de�ned by sets of differential equations of
the form

mi ¤µi ¯ di �µi ˘ Pi ¡
X

j
ai j sin(µi ¡µ j ) , i ˘ 1, ...,n. (4.1)

The coupled individual systems are oscillators with a compact angle degree of freedom
µi 2 (¡…,…]. Their uncoupled dynamics are determined by natural frequencies Pi

1, iner-
tia parameters mi and damping parameters di . Because the degrees of freedom are compact,
the coupling between oscillators needs to be a periodic function of angle differences and
here we keep only its �rst Fourier term. The coupling between pairs of oscillators is de�ned
on a network whose Laplacian matrix has elements L(0)

i j ˘ ¡ai j if i 6˘ j and L(0)
i i ˘

P
k 6˘i ai k .

Without inertia, mi ˘ 0 8i , Eq. (4.1) gives the celebrated Kuramoto model on a network with
edge weights ai j ¨ 0, 8i , j [77, 2]. With inertia on certain nodes, it is an approximate model
for the swing dynamics of high voltage electric power grids in the lossless line approxima-
tion [83, 13, 40]. The latter is justi�ed in high voltage transmission grids, where the resistance
is smaller than the reactance typically by a factor of ten or more. Applied to high voltage grids,
Eq. (4.1) describes the transient behavior of power grids on time scales of up to roughly ten
to twenty seconds. Over such time intervals, voltage amplitudes of high voltage power grids

1We allow ourselves a small abuse of language since, strictly speaking, the natural frequency of the i th oscillator
would be Pi /di .

67



Chapter 4. The Key Player Problem in Complex Oscillator Networks and Electric Power
Grids: Resistance Centralities Identify Local Vulnerabilities

are almost constant, accordingly it is justi�ed to consider only the dynamics of voltage angles
[76]. In this manuscript we are interested in that transient time regime and accordingly focus
on the voltage angle dynamics given by Eq. (4.1). When angle differences are small, a linear
approximation sin(µi ¡µ j ) ’ µi ¡µ j is justi�ed, giving �rst- (without) or second-order (with
inertia) consensus dynamics [81].

When the natural frequencies Pi are not too large, synchronous solutions exist that satisfy
Eq. (4.1) with ¤µi ˘ 0 and �µi ˘ !0, 8i . Without loss of generality, one may consider Eq. (4.1)
in a frame rotating with the synchronous angular frequency !0 in which case such states
correspond to stable �xed points with �µi ˘ 0. We consider a �xed point with angle coordinates
µ(0) ˘ (µ(0)

1 , . . . ,µ(0)
n ) corresponding to natural frequencies P (0) ˘ (P (0)

1 , . . . ,P (0)
n ), to which we

add a time-dependent disturbance, Pi (t) ˘ P (0)
i ¯–Pi (t). In the case of electric power grids,

we will consider �xed points that are solutions to an optimal power �ow problem. These
solutions account for physical grid constraints such as thermal (i.e. capacity) limits of the lines
and technical limitations of the power plants, as well as economic constraints following from
different production costs for different power plant types (see Appendix, 4.5) [14]. Linearizing
the dynamics about that solution, Eq. (4.1) becomes

mi – ¤µi ¯ di – �µi ˘ –Pi (t ) ¡
X

j
ai j cos(µ(0)

i ¡µ(0)
j )(–µi ¡–µ j ) , i ˘ 1, ...,n, (4.2)

where –µi (t) ˘ µi (t) ¡ µ(0)
i . This set of coupled differential equations governs the small-

signal response of the system corresponding to weak disturbances. The couplings are de-
�ned by a weighted Laplacian matrix Li j (µ(0)) ˘ ¡ai j cos(µ(0)

i ¡ µ(0)
j ) if i 6˘ j and Li i (µ(0)) ˘

P
k ai k cos(µ(0)

i ¡µ(0)
k ) which contains information on both the topology of the network and the

operational state of the system. This weighted Laplacian matrix signi�cantly differs from the
network Laplacian L(0) when angle differences between coupled nodes are large.

We assess the nodal vulnerability of the system de�ned in Eq. (4.1) via the magnitude of the
transient dynamics determined by Eq. (4.2) under a time-dependent disturbance –Pi (t ). We
take the latter as an Ornstein-Uhlenbeck noise on the natural frequency of a single node,
with vanishing average, –Pi (t ) ˘ 0, variance –P 2

0 and correlation time ¿0, –Pi (t1)–P j (t2) ˘
–i k – j k –P 2

0 exp[¡jt1 ¡ t2j/¿0]. It is sequentially applied on each of the k ˘ 1, . . .n nodes. This
noisy test disturbance is designed to investigate network properties on different time scales by
varying ¿0 and identify the set of most vulnerable nodes, i.e. the key players, as the nodes where
the system’s response to –Pk (t ) is largest. Besides being a probe to test nodal vulnerabilities,
such noisy disturbances alternatively model �uctuating renewable energy sources in electric
power grids. In this latter case, however, the correlation time ¿0 is no longer a free parameter
and is typically of the order of a minute or more, i.e. larger than any dynamical time scale in
the system, as we discuss below. We quantify the magnitude of the response to the disturbance
with the following two performance measures [121]

P1 ˘ lim
T !1

T ¡1 X

i

Z T

0
j–µi (t ) ¡¢(t )j2 dt , (4.3a)
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P2 ˘ lim
T !1

T ¡1 X

i

Z T

0
j– �µi (t ) ¡ �¢(t )j2 dt . (4.3b)

They are similar to quadratic performance measures based on L2 or H2-norms previously
considered in the context of electric power grids, networks of coupled oscillators or consensus
algorithms [119, 109, 110, 102, 93, 121, 31] but differ from them in two respects. First, here we
subtract the averages ¢(t ) ˘ n¡1 P

j –µ j (t ) and �¢(t ) ˘ n¡1 P
j – �µ j (t ) because the synchronous

state does not change under a constant angle shift. Without that subtraction, arti�cially
large performance measures may be obtained, which re�ect a constant angle drift of the
synchronous operational state but not a large transient excursion. Second, we divide P1,2 by
T before taking T ! 1 because we consider a noisy disturbance that is not limited in time
and which would otherwise lead to diverging values of P1,2.

In this manuscript, we calculate P1,2 for the network-coupled dynamical system de�ned in
Eq. (4.1) when (i) both inertia and damping parameters are constant, mi · m0, di · d0, (ii) the
inertia vanishes, mi · 0, (iii) the ratio ° · di /mi is constant, (iv) both inertia and damping
vary independently. In cases (i)�(iii), P1,2 can be analytically expressed in terms of resistance
centralities that will be introduced in the next section (see Appendix, 4.5). The next paragraphs
focus on case (i), following which we present numerical data for case (iv) which illustrate the
general applicability of these results for not too short noise correlation time.

The performance measures P1,2 can be computed analytically from Eq. (4.2) via Laplace
transforms (see Appendix, 4.5), for homogeneous damping and inertia, i.e. di ˘ d ˘ °mi , 8i .
In the two limits of long and short noise correlation time ¿0, they can be expressed in terms
of the resistance centrality of the node k on which the noisy disturbance acts and of graph
topological indices called generalized Kirchhoff indices [71, 121]. Both quantities are based
on the resistance distance, which gives the effective resistance ›(1)

i j between any two nodes i
and j on a �ctitious electrical network where each edge is a resistor of magnitude given by the
inverse edge weight in the network de�ned by the weighted Laplacian matrix. One obtains

›(1)
i j (µ(0)) ˘ L�

i i (µ(0)) ¯L�
j j (µ(0)) ¡L�

i j (µ(0)) ¡L�
j i (µ(0)) , (4.4)

where L� denotes the Moore-Penrose pseudo-inverse of L [71]. The resistance centrality of the
kth node is then de�ned as C1(k) ˘ [n¡1 P

j ›(1)
j k ]¡1. It measures how central is the node kth in

the electrical network, in terms of its average resistance distance to all other nodes � more
central nodes have smaller C1(k). A network descriptor, the Kirchhoff index is further de�ned
as [71]

Kf1 ·
X

i˙ j
›(1)

i j . (4.5)

Generalized Kirchhoff indices Kfp and resistance centralities Cp (k) can be de�ned analogously
from the pth power of the weighted Laplacian matrix, which is also a Laplacian matrix (see
Appendix, 4.5). In terms of these quantities, the performance measures de�ned in Eqs. (4.3)
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depend on the value of the noise correlation time ¿0 relative to the different time scales in
the system. The latter are the ratios d/‚fi of the damping coef�cient d with the nonzero
eigenvalues ‚fi, fi ˘ 2, . . .n, of L(µ(0)) and the inverse ratio °¡1 ˘ m/d of damping to inertia
parameters. In high voltage power grids, they are approximately given by d/‚fi ˙ 1s and
m/d »̆ 2.5s. Performance measures Eqs. (4.3) can be obtained for any correlation time ¿0

(see Appendix, 4.5). However, it is interesting to consider the speci�c cases where ¿0 is
the smallest (¿0 ¿ d/‚fi,°¡1) or the largest (¿0 À d/‚fi,°¡1, appropriate for noisy power
injections from new renewables) time scale in the probed system. The performance measures
take in particular the asymptotic values

P1 ˘

( ¡
–P 2

0 ¿0
–

d)
¡
C ¡1

1 (k) ¡ n¡2Kf1
¢

, ¿0 ¿ d/‚fi,°¡1

–P 2
0

¡
C ¡1

2 (k) ¡ n¡2Kf2
¢

, ¿0 À d/‚fi,°¡1 (4.6a)

P2 ˘

( ¡
–P 2

0 ¿0
–

dm
¢¡

n ¡ 1
¢–

n , ¿0 ¿ d/‚fi,°¡1
¡
–P 2

0
–

d¿0
¢¡

C ¡1
1 (k) ¡ n¡2Kf1

¢
, ¿0 À d/‚fi,°¡1,

(4.6b)

in the two limits when ¿0 is the smallest or the largest time scale in the system. After averaging
over the location k of the disturbed node, C ¡1

1,2 ˘ 2Kf1,2/n2, and one recovers the results of
Refs. [109, 110, 121] for the global robustness of the system.

These results are remarkable : they show that the magnitude of the transient excursion under
a local noisy disturbance is given by either of the generalized resistance centralities C1(k) or
C2(k) of the perturbed node and the generalized Kirchhoff indices Kf1,2. The latter are global
network descriptors and are therefore �xed in a given network with �xed operational state.
One concludes that perturbing the less central nodes � those with largest inverse centralities
C ¡1

1,2(k) � generates the largest transient excursion. In a given network, key players are therefore
nodes with smallest resistance centralities. It is important to keep in mind, however, that these
centralities correspond to the weighted Laplacian de�ned above, where internodal couplings
are normalized by the cosine of voltage angle differences. Accordingly, these centralities are
dependent on the initial operating state. The asymptotic analytical results of Eqs. (4.22) are
corroborated by numerical results in the insets of Fig.4.1, obtained directly from Eq. (4.1), i.e.
without the linearization of Eq. (4.2). The validity of the general analytical expressions for
any ¿0 (see Appendix, 4.5) is further con�rmed in the main panel of Fig. 4.1, and by further
numerical results obtained for different networks shown in the Appendix (see 4.5).

The generalized resistance centralities and Kirchhoff indices appearing in Eqs. (4.22) depend
on the operational state via the weighted Laplacian L(µ(0)). For a narrow distribution of natural
frequencies Pi ¿

P
j ai j , 8i , angle differences between coupled nodes remain small, and the

weighted Laplacian is close to the network Laplacian, L(µ(0)) ’ L(0). The resistance centralities
C (0)

1 and C (0)
2 for the network Laplacian of the European electric power grid (see Appendix, 4.5)

are shown in Fig. 4.3. For both centralities, the less central nodes are dominantly located in
the Balkans and Spain. Additionally, for C (0)

1 , nodes in Denmark and Sicily are also among the
most peripheral. The general pattern of these most peripheral nodes looks very similar to the
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Figure 4.2 � Synchronous high voltage power grid of continental Europe. (a) Topology of the
European electric power grid (see Appendix, 4.5) and location of the ten test nodes listed in
Table 4.1.

pattern of most sensitive nodes numerically found in Ref. [49], and includes in particular many,
but not all dead ends, which have been numerically found to undermine grid stability [87].

The asymptotic results of Eqs. (4.22), together with the numerical results of Fig. 4.1 make a
strong point that nodal sensitivity to fast or slowly decorrelating noise disturbances can be
predicted by generalized resistance centralities. One may wonder at this point how generalized
resistance centralities differ in that prediction from other, more common centralities such
as geodesic centrality, nodal degree or PageRank. Table 4.1 compares these centralities to
each other and to the performance measures corresponding to slowly decorrelating noisy
disturbances acting on the ten nodes shown in Fig. 4.2. As expected from Eq. (4.22), P1 and P2

are almost perfectly correlated with the inverse resistance centralities C ¡1
2 and C ¡1

1 respectively,
but with no other centrality metrics. For the full set of nodes of the Europen electric power
grid, we found Pearson correlation coef�cients ‰(P1,C ¡1

2 ) ˘ 0.997, and ‰(P2,C ¡1
1 ) ˘ 0.975

fully corroborating the prediction of Eqs. (4.22).

Discussion

Once a one-to-one relation between the generalized resistance centralities C1(k) and C2(k)
of the disturbed node k and the magnitude of the induced transient response is established,
ranking of nodes from most to least critical is tantamount to ranking them from smallest
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Figure 4.3 � Synchronous high voltage power grid of continental Europe. Normalized general-
ized resistance centralities C (0)

1 (i ) (b), and C (0)
2 (i ) (c) for the network Laplacian matrix of the

European electric power grid.

to largest C1 or C2. From Eqs. (4.22), which of these two centralities is relevant depends on
whether one is interested (i) in the transient response under fast or slowly decorrelating noise,
or (ii) in investigating transient behaviors for angles (using the performance measure P1) or
frequencies (P2). Quite interestingly, while this gives a priori four different rankings, Eqs. (4.22)
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node # Cgeo Degree PageRank C1 C2 P num
1 P num

2 [°2]
1 7.84 4 2782 31.86 5.18 0.047 0.035
2 6.8 1 199 22.45 5.68 0.021 0.118
3 5.56 10 3802 22.45 2.33 0.32 0.116
4 4.79 3 362 21.74 3.79 0.126 0.127
5 7.08 1 1217 21.74 5.34 0.026 0.125
6 4.38 6 3091 21.69 5.65 0.023 0.129
7 5.11 2 445 19.4 5.89 0.016 0.164
8 4.15 6 3648 19.38 1.83 0.453 0.172
9 5.06 1 8 10.2 5.2 0.047 0.449

10 2.72 4 3124 7.49 2.17 0.335 0.64

Table 4.1 � Centrality metrics and performance measures P1,2 for the European electric power
grid (see Appendix, 4.5) with noisy disturbances with large correlation time ¿0 applied on the
nodes shown in Fig. 4.2. The performance measures P1 and P2 are almost perfectly correlated
with the resistance centralities C2 and C1 respectively, but neither with the geodesic centrality,
nor the degree, nor PageRank.

lead to only two rankings, either based on C ¡1
1 or C ¡1

2 , which can be obtained through the
performance measure P1 only, in either asymptotic limit of very fast (shortest time scale ¿0)
or very slowly (largest ¿0) decorrelating noise. From here on, we therefore focus on the angle
performance measure P1 of Eq. (4.3a) and consider the two asymptotic limits in Eq. (4.22a).

We therefore de�ne WLRank1 and WLRank2 as two rankings which order nodes from smallest
to largest C1 and C2 respectively2. Smallest WLRank1,2 therefore identify the most vulnerable
nodes in a given network. Fig. 4.4 shows that they differ very signi�cantly. In particular a
number of nodes are among the most critical according to WLRank1 but not to WLRank2 and
vice-versa. This discrepancy means that nodes are not central in an absolute sense, instead,
their centrality and hence how critical they are depends on details of the disturbance � in the
present case, the correlation time ¿0 � and the perfomance measure of interest. One should
therefore chose to use one or the other centrality measure, according to the network sensitivity
one wants to check.

The resistance centralities in Eqs. (4.22) correspond to the network de�ned by the weighted
Laplacian L(µ(0)) de�ned by Eq. (4.2). They therefore depend on the unperturbed, operating
state µ(0), consequently, WLRank depends not only on the nework topology, but also, as
expected, on the natural frequencies and the coupling between the nodal degrees of freedom.
As mentioned above, in the strong coupling limit, angle differences between coupled nodes
remain small and L(µ(0)) ’ L(0). In that limit, one therefore expects nodal ranking to be
given by resistance distances corresponding to the network Laplacian L(0). How long this
remains true is of central interest and to answer this question we de�ne further rankings

2When used, subscripts LRanki and WLRanki indicate that these are rankings obtained from the centralities Ci ,
i ˘ 1,2.
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Figure 4.4 � Comparison of the two nodal rankings WLRank1 and WLRank2 obtained from
the generalized resistance centralities C1 and C2 respectively for the 3809 nodes of the Euro-
pean electric power grid sketched in Fig. 4.2 (see Appendix, 4.5). Blue dots correspond to a
moderate load during a standard winter weekday and red dots to a signi�cantly heavier load
corresponding to the exceptional November 2016 situation with a rather large consumption
and twenty french nuclear reactors shut down.

LRank1,2 as the rankings using resistance centralities C (0)
1,2 obtained from the network Laplacian

L(0). As long as angle differences between network-coupled nodes are not too large, the
ranking LRank based on the network Laplacian matrix is almost the same as the true ranking
WLRank based on the weighted Laplacian. This is shown in Fig. 4.5 for three electric power
grid models and one random network of coupled oscillators. For the electric power grid
models, injections/natural frequencies are limited by the standard operational constraint
that the thermal limit of each power line is at most only weakly exceeded. This corresponds
approximately to a maximal angle difference of max(¢µ) ’ 30o between any pair of coupled
nodes. Accordingly, we �nd that even in relatively strongly loaded power grids (corresponding
for instance to the exceptional situation of the fall of 2016 when twenty french nuclear reactors
were simultaneously of�ine; see red points in Fig. 4.5c, there is not much of a difference
between LRank and WLRank. The two rankings start to differ from one another only when
at least some natural frequencies become comparable with the corresponding nodal index,
Pi .

P
j bi j , and angle differences become very large. This case has been investigated for an

inertialess coupled oscillator system on a random rewired network with constant couplings
(see Appendix, 4.5) [126]. It is shown in green in Fig. 4.5d and corresponds to max(¢µ) ˘ 106o .

In Fig. 4.6 we investigate more closely when the approximate ranking LRank starts to differ
from the true ranking WLRank. To that end we used the randomly rewired model of inertialess
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Figure 4.5 � Comparison between LRank and WLRank corresponding to P1 for noisy distur-
bances with large correlation time ¿0. (a�c) Electric power grid models for normally (blue) and
more heavily loaded (red) operating states governed by Eq. (4.1). (a) IEEE 57 testcase where
the more loaded case has injections six times larger than the moderately loaded, tabulated
case [91]. (b) Pegase 2869 testcase where the more loaded case has injections 30% larger
than the moderately loaded, tabulated case [134]. (c) European electric power grid model
sketched in Fig. 4.2 (see Appendix, 4.5) where the moderately loaded case corresponds to a
standard winter weekday and the more heavily loaded case to the November 2016 situation
with twenty french nuclear reactors of�ine. For both cases, the operational state is obtained
from an optimal power �ow including physical, technological and economic constraints (see
Appendix, 4.5). (d) Inertialess coupled oscillators governed by Eq. (4.1) with mi ˘ 0, 8i , on a
random network with 1000 nodes obtained by rewiring a cyclic graph with constant nearest
and next-to-nearest neighbor coupling with probability 0.5 (see Appendix, 4.5) [126]. Natural
frequencies are randomly distributed as Pi 2 [¡1.8,1.63] (blue), Pi 2 [¡2.16,1.95] (red) and
Pi 2 [¡2.7,2.45] (green), corresponding to maximal angle differences max(¢µ) ˘ 31o , 70o and
106o respectively.

coupled oscillators of Fig. 4.5d and calculated the percentage of nodes with highest LRank2

necessary to give the top 15 % ranked nodes with WLRank2. The results are plotted as a
function of the maximal angle difference between directly coupled nodes. Each of the 12000
red crosses in Fig. 4.6 corresponds to one of 1000 natural frequency vectors P (0), with com-
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Figure 4.6 � Percentage of the nodes with highest LRank2 necessary to give the top 15 %
ranked nodes with WLRank2 for a random network of inertialess coupled oscillators with 1000
nodes obtained by rewiring with probability 0.5 a cyclic network with constant nearest and
next-to-nearest neighbor coupling (see Appendix, 4.5) [126]. Each of the 12000 red crosses
corresponds to one of 1000 random natural frequency vector P (0) with components randomly
distributed in [¡0.5,0.5] and summing to zero, multiplied by a prefactor fl ˘ 0.4,0.6, . . .2.4,2.6.
The blue crosses correspond to running averages over 500 red crosses with consecutive values
of max(¢µ). Inset : running averages of the Frobenius distance between the matrices L(µ(0))
and L(0). The steps in the curve re�ect discrete increments of fl.

ponents randomly distributed in [¡0.5,0.5] and summing to zero, multiplied by a prefactor
fl ˘ 0.4,0.6, . . .2.4,2.6. The blue crosses correspond to running averages over 500 red crosses
with consecutive values of max(¢µ). One sees that, up to almost max(¢µ) ’ 40o , the set of the
18 % of nodes with highest LRank2 always includes the top 15 % ranked nodes with WLRank2.
Similar results for obtaining the top 10 and 20 % ranked nodes with WLRank2, and for rankings
using C1 instead of C2 are shown in the Appendix (see 4.5).

That nodal ranking remains almost the same up to angle differences of about 40o is quite
surprising, since coupling nonlinearities are already well developed there. This is illustrated

in the inset of Fig. 4.6 which plots the Frobenius distance
r

P
i j

‡
Li j (µ(0)) ¡L(0)

i j

·2
between

the network Laplacian L(0) and the weighted Laplacian L(µ(0)). When max(¢µ) ’ 40o , the
Frobenius distance has already reached about 27 % of its maximal observed value, indicating
that coupling nonlinearities are already signi�cant. Yet, obtaining a desired set of the ns most
critical nodes for any con�guration with max(¢µ) . 40o , including cases with nonegligible
nonlinearities, is achieved with a single matrix inversion of the network Laplacian L(0), while
considering a slightly extended set of ns ¯–ns nodes with highest LRank, –ns/ns ¿ 1. This is a
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moderate price to pay, compared to the price of calculating WLRank for each con�guration,
which each time requires inverting the weighted Laplacian matrix L(µ(0)). That latter procedure
would be too-time consuming for real-time assessment of large networks.

So far we have assumed constant inertia and damping parameters, which led us to the ana-
lytical expressions given in Eqs. (4.22) for the performance measures. Analytical results can
further be obtained for inertialess systems with mi ˘ 0 as well as in the case of homogeneous
damping to inertia ratio, di /mi · °. In this latter case the ranking is again given by a resis-
tance centrality, but this time related to the inertia-weighted matrix M¡1/2LM¡1/2 with M
the diagonal matrix whose i th diagonal entry is given by mi (see Appendix, 4.5), but not in
the case of independently varying mi and di . We therefore �nally address this more general
case using a purely numerical approach. This question is especially important for electric
power grids where only nodes connected to rotating machines (such as conventional power
plants) have inertia, and consumer nodes have signi�cantly smaller damping parameters [13].
Time scales in electric power grids have typical values mi /di 2 [1,3]s and di /‚fi . 1s, and
accordingly we focus on the regime of large noise correlation time ¿0 À mi /di ,di /‚fi, which
is appropriate for persisting power �uctuations such as those arising from renewable energy
sources. Fig. 4.7 shows results corresponding to inertia and damping parameters �uctuating
randomly from node to node by up to 40 %. The ranking obtained from a full numerical
calculation is compared to the ranking obtained from a direct calculation of the centrality
of the weighted Laplacian Li j (µ(0)), corresponding to the long correlation time asymptotic
limit of Eqs. (4.22). One sees that the centrality-based ranking is close to the true, numerically
obtained ranking, even in this case of strongly �uctuating inertia and damping parameters.
This extends the validity of Eqs. (4.22) for large ¿0 in a much wider range of parameters than
their derivation would suggest.

Conclusion

We have formulated a key player problem in deterministic, network-coupled dynamical sys-
tems. The formulation is based on the dynamical response to a nodal additive disturbance
of the initial problem, and the most critical nodes � the key players � are de�ned as those
where the response to the disturbance is largest. While this manuscript focused on (i) noisy
Ornstein-Uhlenbeck disturbances, (ii) network-coupled systems on undirected graphs, in
particular with symmetric couplings ai j ˘ a j i in Eq. (4.1), and (iii) performance measures of
the transient response that are quadratic forms in the system’s degrees of freedom, the method
is not restricted to such cases. First, it can be used to deal with different disturbances and in
the Appendix (see 4.5), we calculate P1,2 for a box disturbance –Pi (t) ˘ –i k–P0£(t)£(¿0 ¡ t)
with the Heaviside function £(t). Remarkably, this disturbance gives the same ranking as
the Ornstein-Uhlenbeck noise disturbance considered above. Second, asymmetric couplings
occurring e.g. in directed graphs [36], in Kuramoto models with frustration [2] or in electric
power grids with Ohmic dissipation [83] can also be considered. In this case, the internodal
coupling is given by asymmetric real matrices instead of symmetric Laplacian matrices. How-
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Figure 4.7 � (Left) Numerically obtained ranking based on the performance measure P1 plot-
ted against the ranking WLRank2 based on the centrality C2 and (Right) numerically obtained
ranking based on the performance measure P2 plotted against the ranking WLRank1 based on
the centrality C1. Each point is an average over 40 different noisy disturbances on a single node
of the European electric power grid sketched in Fig. 4.2, with independently �uctuating damp-
ing and inertia coef�cients, di ˘ d0 ¯–di and mi ˘ m0 ¯–mi with –mi /m0,–di /d0 2 [¡0.4,0.4]
and ° ˘ d0/m0 ˘ 0.4s¡1. The noise correlation time is given by °¿0 ˘ 4.

ever, the de�nition of the resistance distance, Eq. (4.4), remains valid even if L is replaced by
an asymmetric matrix A, in that it still gives ›(1)

i i ˘ 0, ›(1)
i j ‚ 0, and ›(1)

i j • ›(1)
i k ¯›(1)

ki , 8i , j ,k as
long as the synchronous �xed point considered remains stable. Third, nonquadratic perfor-
mance measures can in principle be considered within the spectral decomposition used in
this article. One may think of average frequency nadir and rate of change of frequency, which
are linear performance measures [93, 55]. It is at present unclear whether these quantities can
be analytically related to the location of disturbances via resistance or other centralities.

We gave an elegant answer to this key player problem : ranking nodes from most to least critical
is tantamount to ranking nodes from least to most central in the sense of resistance centralities.
Depending on how the problem is formulated � mostly on details of the disturbance as well
as on how the magnitude of the transient response is measured � different centralities have
to be considered, giving different rankings. The key player problem in deterministic systems
is therefore not uniquely de�ned and its formulation must be tailored to re�ect the most
relevant dynamical properties one wants to evaluate. Averaged rankings, re�ecting several
such properties simultaneously could also be considered. Finally we found numerically that
resistance centralities are still accurate to identify the most critical nodes even when nodal
dynamical parameters (damping and inertia) are not homogeneous.

The results shown in Fig. 4.7 are rather surprising, and further inspection of our analytical
results, Eqs. (4.22) as well as Eq. (4.20b) suggest that an inertia dependence could emerge in
the opposite limit of short correlation time ¿0 ¿ mi /di ,di /‚fi. This point deserves further
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investigations. It would be furthermore interesting to extend our investigations to cases of
distributions of inertia and damping parameters corresponding to realistic electric power
grids. Work along those lines is in progress.
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Appendix

Calculation of the Performance Measures

We give some details of the calculation of the performance measures, Eqs. (4.3). These cal-
culations generalize to second-order swing equations the results obtained for the �rst-order
Kuramoto model in Ref. [121]. Starting from Eq. (4.1), we consider a stable �xed-point solution
µ(0) ˘ (µ(0)

1 , . . . ,µ(0)
n ) with unperturbed natural frequencies P (0). We subject this state to a time-

dependent disturbance P (t) ˘ P (0) ¯ –P (t), which makes angles become time-dependent,
µ(t) ˘ µ(0) ¯ –µ(t). Linearizing the dynamics de�ned by Eq. (4.1) about µ(0) and under the
assumption that di /mi ˘ °, 8i , one obtains

–¤flµ ¯°–�flµ ˘ M¡1/2–P ¡ M¡1/2L(µ(0))M¡1/2 – flµ , (4.7)

where we introduced matrices with elements Di j ˘ –i j di ˘ °Mi j and new angle coordinates
– flµ ˘ M1/2–µ. The weighted Laplacian matrix L(µ(0)) is de�ned as

Li j ˘

(
¡ai j cos(µ(0)

i ¡µ(0)
j ) , i 6˘ j ,

P
k ai k cos(µ(0)

i ¡µ(0)
k ) , i ˘ j .

(4.8)

This Laplacian is minus the stability matrix of the linearized dynamics about a stable syn-
chronous state. It is therefore positive semide�nite, with its largest eigenvalue ‚1 ˘ 0 corre-
sponding to a constant eigenvector u1 ˘ (1,1,1, ...1)/

p
n, and ‚fi ¨ 0, fi ˘ 2,3, ...n. We de�ne

the matrix LM ˘ M¡1/2LM¡1/2 with eigenvectors uM
fi and eigenvalues ‚M

fi , for fi ˘ 1,2, ...n. To
calculate the response of the system to –P (t ), we expand angle deviations over the eigenstates
uM

fi of LM , – flµ(t ) ˘
P

fi cfi(t )uM
fi . Eq. (4.7) becomes

¤cfi(t ) ¯° �cfi(t ) ˘ M¡1/2–P (t ) ¢ uM
fi ¡‚M

fi cfi(t ) . (4.9)

The disturbance starts at t ˘ 0 and therefore – flµ(0) ˘ 0 and –�flµ(0) ˘ 0. Performing a Laplace
transform on Eq. (4.9), one gets

s2cfi(s) ¯° s cfi(s) ˘ ‚M
fi cfi(s) ¯ (M¡1/2–P ¢ uM

fi )(s) , (4.10)

where cfi(s) ˘
R t

0 e¡st 0
cfi(t 0)d t 0 and (M¡1/2–P ¢ uM

fi )(s) ˘
R t

0 e¡st 0
M¡1/2–P (t 0) ¢ uM

fi d t 0. Finally
one obtains the Laplace transformed expansion coef�cients of the angles over the eigenbasis
of uM

fi of LM ,

cfi(s) ˘ (M¡1/2–P ¢ uM
fi )(s)

.µ
s ¡

¡°¯¡fi

2

¶µ
s ¯

°¯¡fi

2

¶
, (4.11)

with ¡fi ˘
q

°2 ¡ 4‚M
fi . Applying an inverse Laplace transform leads to,

cfi(t ) ˘ e
¡°¡¡fi

2 t
Z t

0
e¡fit 0

Z t 0

0
M¡1/2–P (t 00) ¢ uM

fi e
°¡¡fi

2 t 00
d t 00d t 0 . (4.12)
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The time-dependence of angle and frequency degrees of freedom is then given by,

–µ(t ) ˘ M¡1/2– flµ(t ) ˘
X

fi
cfi(t )M¡1/2uM

fi , (4.13)

– �µ(t ) ˘ M¡1/2–�flµ(t ) ˘
X

fi
�cfi(t )M¡1/2uM

fi . (4.14)

The variances p1(t ) and p2(t ) of the angle and frequency deviations read,

p1(t ) ˘ –µ2(t ) ˘
X

fi,fl
cfi(t )cfl(t )uM

fl
>

M¡1uM
fi , (4.15)

p2(t ) ˘ – �µ2(t ) ˘
X

fi,fl
�cfi(t ) �cfl(t )uM

fl
>

M¡1uM
fi . (4.16)

When di ˘ d ˘ °mi 8i , both matrices L and LM have the same eigenvectors and ‚M
fi ˘ ‚fi/m.

Below we consider noisy disturbances sequentially for the homogeneous case, mi ˘ m, di ˘ d ,
inertialess case, mi ˘ 0 and constant ratio case, di /mi ˘ °.

Correlated Noisy disturbances

Homogeneous Case
We assume homogeneous inertia and damping factor, respectively mi ˘ m and di ˘ d , for the
next calculations. In the case of stochastic disturbances that persist in time, we average the
pi ’s as follows,

P i ˘ lim
T !1

T ¡1
Z T

0
pi (t )d t , i ˘ 1,2, (4.17)

where pi (t ) indicates an average taken over the ensemble de�ned by e.g. the moments of the
stochastic disturbance. We consider Ornstein-Uhlenbeck correlated noise on a single node, k,
with zero mean –Pk (t ) ˘ 0 and second moment –Pi (t1)–P j (t2) ˘ –i k– j k –P 2

0 exp[¡jt1 ¡ t2j/¿0],
correlated over a typical time scale ¿0. We have,

P1 ˘ lim
T !1

T ¡1 X

fi‚2

Z T

0
c2

fi(t )d t (4.18)

˘ lim
T !1

T ¡1 X

fi‚2

Z T

0
e¡(°¯¡fi)t

Z t

0

Z t

0
e¡fi(t 0

1¯t 0
2) £ (4.19)

Z t 0
1

0

Z t 0
2

0

X

i , j

ufi,i ufi, j

m
–Pi (t 00

1 )–P j (t 00
2 )e

°¡¡fi
2 (t 00

1 ¯t 00
2 ) d td t 0

1d t 0
2d t 00

1 d t 00
2 .
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For homogeneous damping and inertia one has ¡fi ˘
p

°2 ¡ 4‚fi/m. The integrals can be
performed straightforwardly and one obtains

P1 ˘ –P 2
0

X

fi‚2

u2
fi,k (¿0 ¯ m/d)

‚fi(‚fi¿0 ¯ d ¯ m¿¡1
0 )

, (4.20a)

P2 ˘ –P 2
0

X

fi‚2

u2
fi,k

d(‚fi¿0 ¯ d ¯ m¿¡1
0 )

. (4.20b)

Taking the two limits ‚fi¿0 À d , ‚fi¿2
0 À m and ‚fi¿0 ¿ d , ‚fi¿2

0 ¿ m, Eqs. (6a,b) of the main
text are then easily obtained.

Inertialess case
The performance measures for Kuramoto oscillators are obtained from Eqs. (4.20) with m ˘ 0
[39]

P1 ˘ –P 2
0

X

fi‚2

u2
fi,k¿0

‚fi(‚fi¿0 ¯ d)
, (4.21a)

P2 ˘ –P 2
0

X

fi‚2

u2
fi,k

d(‚fi¿0 ¯ d)
. (4.21b)

The asymptotics are then obtained by taking the asymptotic limits of large/small ¿0 only after
setting m ˘ 0. One obtains,

P1 ˘

( ¡
–P 2

0 ¿0
¢–

d)
¡
C ¡1

1 (k) ¡ n¡2Kf1
¢

, ‚fi¿0 ¿ 1,
–P 2

0
¡
C ¡1

2 (k) ¡ n¡2Kf2
¢

, ‚fi¿0 À d ,
(4.22a)

P2 ˘

( ¡
–P 2

0 ¿0
–

d
¢¡

n ¡ 1
¢–

n , ‚fi¿0 ¿ 1,
¡
–P 2

0
–

d¿0
¢¡

C ¡1
1 (k) ¡ n¡2Kf1

¢
, ‚fi¿0 À d ,

(4.22b)

where we use the generalized resistance centralities C1,2(i ) and Kirchhoff indices Kf1,2 dis-
cussed in Section 4.5.2 below.

Constant inertia to damping ratio
The cases of varying mi and di can be further treated analytically, provided the ratio di /mi ˘ °
remains constant. The price to pay is to include inertia coef�cients in the performance
measures and consider

P1 ˘ lim
T !1

T ¡1 X

i
mi

Z T

0
j–µi (t ) ¡¢(t )j2 dt , (4.23a)

P2 ˘ lim
T !1

T ¡1 X

i
mi

Z T

0
j– �µi (t ) ¡ �¢(t )j2 dt . (4.23b)

Note that this is not a fundamental rede�nition, since all previously obtained results in the
case of constant inertia and damping can be multiplied by mi · m for comparison with results
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about to be presented. Performance measures are then obtained in a similar way as for the
homogeneous case. They read,

P1 ˘
–P 2

0

mk

X

fi‚2

uM
fi,k

2(¿0°¯ 1)

°‚M
fi (‚M

fi ¿0 ¯°¯¿¡1
0 )

, (4.24a)

P2 ˘
–P 2

0

mk

X

fi‚2

uM
fi,k

2

°(‚M
fi ¿0 ¯°¯¿¡1

0 )
. (4.24b)

Here, ‚M
fi , uM

fi are respectively the eigenvalues and eigenvectors of the matrix M¡1/2LM¡1/2.
Similar expressions were obtained for other performance measures such as kinetic energy,
primary control effort or line dissipation [119, 109, 110, 31]. In both limits ¿0 ¿ °¡1,‚M

fi
¡1/2

and ¿0 À °¡1,‚M
fi

¡1/2 performance measures P1, P2 can be expressed in terms of resistance
centralities related to M¡1/2LM¡1/2 (see Eq. (4.32) with L0 ˘ M¡1/2LM¡1/2) and the inertia mk

of the perturbed node.

Box disturbances

The same kind of computation as for the noisy disturbance can be done with a box disturbance
acting on node k, i.e. –Pi (t ) ˘ –i k –P0 £(t )£(¿0 ¡ t ) with the Heaviside step function £(t ) ˘ 0
for t ˙ 0 and £(t) ˘ 1 for t ‚ 1. As the perturbation is limited in time, we consider the
performance measures,

P 1
1 ˘

X

i

Z 1

0
j–µi ¡¢(t )j2d t , (4.25)

P 1
2 ˘

X

i

Z 1

0
j– �µi ¡ �¢(t )j2d t , (4.26)

instead of (4.17). For uniform inertia and damping one obtains,

P 1
1 ˘

–P 2
0 m

8°

X

fi‚2

u2
fi,k

¡fi‚3
fi

h
2¡fi(4°¿0‚fi/m ¡ 3°2 ¡¡2

fi) ¯ (°¯¡fi)3e¡¿0
(°¡¡fi)

2 ¡ (°¡¡fi)3e¡¿0
(°¯¡fi)

2

i
,

P 1
2 ˘

–P 2
0

2d

X

fi‚2

u2
fi,k

¡fi‚fi

h
2¡fi ¡ (°¯¡fi)e¡ ¿0(°¡¡fi)

2 ¯ (°¡¡fi)e¡ ¿0(°¯¡fi)
2

i
,

with ¡fi ˘
p

°2 ¡ 4‚fi/m. The two asymptotic limits of large and small ¿0 are given by,

P 1
1 ˘

( ¡
–P 2

0 ¿2
0
–

2d)
¡
C ¡1

1 (k) ¡ n¡2Kf1
¢

, (°§¡fi)¿0 ¿ 1,
–P 2

0 ¿0
¡
C ¡1

2 (k) ¡ n¡2Kf2
¢

, (°§¡fi)¿0 À 1 and ‚fi¿0/d À 1,
(4.27a)

P 1
2 ˘

( ¡
–P 2

0 ¿2
0
–

2md
¢¡

n ¡ 1
¢–

n , (°§¡fi)¿0 ¿ 1,
¡
–P 2

0
–

d
¢¡

C ¡1
1 (k) ¡ n¡2Kf1

¢
, (°§¡fi)¿0 À 1,

(4.27b)

which are also given by resistance centralities and Kirchhoff indices.
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Resistance Distances, Centralities and Kirchhoff Indices

The resistance centralities C1 and C2 can be expressed as functions of the distribution of
resistance distances ›(1)

i j , between any pairs of nodes (i , j ) of the network. The Laplacian
matrix L of the network has one zero eigenvalue associated to the constant eigenvector u1,i ˘
1/

p
n, its pseudoinverse L� is de�ned by [71],

LL� ˘ L�L ˘ 1¡ u>
1 u1 , (4.28)

from which the resistance distance between nodes i and j is expressed as,

›(1)
i j ˘ L�

i i ¯L�
j j ¡L�

i j ¡L�
j i . (4.29)

Using the eigenvectors of L we can rewrite Eq. (4.29) as [39],

›(1)
i j ˘

X

fi‚2

(ufi,i ¡ ufi, j )2

‚fi
. (4.30)

The resistance distance is a graph metric in the sense that : i) ›(1)
i i ˘ 0, 8i , ii) ›(1)

i j ‚ 0, 8i , j ,

and iii) ›(1)
i j ¯›(1)

j k ‚ ›(1)
i k , 8i , j ,k (triangle inequality) [71]. The Kirchhoff index of a network is

obtained from the resistance distances by summing over all pairs of nodes [71],

Kf1 ˘
X

i˙ j
›(1)

i j ˘ n
X

fi‚2
‚¡1

fi . (4.31)

The Kirchhoff index is, up to a normalization factor, the mean resistance distance over the
whole graph.

We generalize this de�nition of the resistance distance for matrices that are powers of the
original Laplacian matrix, L0 ˘ Lp and thus

£
L0⁄� ˘

£
Lp ¯ u>

1 u1
⁄¡1. One has

›(p)
i j ˘ [L0�]i i ¯ [L0�] j j ¡ [L0�]i j ¡ [L0�] j i . (4.32)

The eigenvectors of L0 are the same as those of L. Thus we have,

›(p)
i j ˘

X

fi‚2

(ufi,i ¡ ufi, j )2

‚p
fi

. (4.33)

We still have to check that the generalized resistance distances ›(p)
i j have the three properties

of a graph metric. We remark that ›(p)
i j corresponds to the resistance distance between nodes

i and j in a new graph whose Laplacian is L0 ˘ Lp . Therefore it is suf�cient to show that L0

is also a Laplacian matrix. to that end we demonstrate that the product of two Laplacian
matrices A and B is still a Laplacian matrix. For a Laplacian matrix A one has (i)

P
i Ai j ˘ 0,

(ii) Ai i ˘ ¡
P

j 6˘i Ai j . From these generic properties of Laplacian matrices, matrix elements of
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the product A B satisfy

X

j
[A B]i j ˘

X

j ,k
Ai kBk j ˘ 0 , (4.34)

X

j 6˘i
[A B]i j ˘

X

j
[A B]i j ¡ [A B]i i ˘ ¡[A B]i i . (4.35)

We conclude that the product A B is also a Laplacian matrix, and therefore, the generalized
resistance distances ›(p)

i j have the three properties of a graph metric. With the generalized
resistance distances, we can de�ne generalized Kirchhoff indices [121],

Kfp ˘
X

i˙ j
›(p)

i j ˘ n
X

fi‚2
‚¡p

fi . (4.36)

The relation between the resistive centrality C1(i ) and the resistance distance is obtained from
Eqs. (4.30) and (4.31),

C1(i ) ˘

"

n¡1 X

j
›(1)

i j

#¡1

˘

"
X

fi‚2

u2
fi,i

‚fi
¯ n¡2Kf1

#¡1

. (4.37)

The expression for C2(i ) involves higher moments of the distribution of resistance distances.
We obtain

C2(i ) ˘
X

j
›(1)

i j
2

¡ n C ¡2
1 (i ) ¯ 2

X

j
›(1)

i j C ¡1
1 ( j ) ¡ 4 C ¡1

1 (i ) n¡1Kf1 ¡ 3
X

j
C ¡2

1 ( j ) ¯ 12n¡3Kf 2
1 .

Numerical Comparison of LRank with WLRank

In Fig.5 of the main text, we calculated the percentage of nodes with highest LRank2 necessary
to give the top 15 % ranked nodes with WLRank2. The conclusions drawn from these data are
generic � they are valid for different percentages than 15% and for LRank1 vs. WLRank1. This
is illustrated in Fig. 4.8, which shows similar results for the percentage of nodes with highest
LRank1,2 that include the top 10% and 20% ranked nodes with WLRank1,2.
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Figure 4.8 � Percentage of the nodes with highest LRank1,2 necessary to give the top 10 %
(left), 20% (right) ranked nodes with WLRank1,2 for a random network of inertialess coupled
oscillators with 1000 nodes obtained by rewiring with probability 0.5 a cyclic graph with
constant nearest and next-to-nearest neighbor coupling (see Appendix, 4.5). Each of the
12000 red crosses corresponds to one of 1000 random natural frequency vector P (0) with
components randomly distributed in [¡0.5,0.5] and summing to zero, multiplied by a prefactor
fl ˘ 0.4,0.6, . . .2.6. The blue crosses correspond to running averages over 500 red crosses with
consecutive values of max(¢µ).
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5 Noise-Induced Desynchronization and
Stochastic Escape from Equilibrium
in Complex Networks

Chapter 5 is a postprint version of an article published as:
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Complex physical systems are unavoidably subjected to external environments not accounted
for in the set of differential equations that models them. The resulting perturbations are
standardly represented by noise terms. If these terms are large enough, they can push the
system from an initial stable equilibrium point, over a nearby saddle point, outside of the
basin of attraction of the stable point. Except in some speci�c cases, the distance between
these two points is not known analytically. Focusing on Kuramoto-like models and under
simple assumptions on this distance, we derive conditions under which such noise terms
perturb the dynamics strongly enough that they lead to stochastic escape from the initial
basin of attraction. We numerically con�rm the validity of that criterion for coupled oscillators
on four very different complex networks. We �nd in particular that, quite counterintuitively,
systems with inertia leave their initial basin faster than or at the same time as systems without
inertia, except for strong white-noise perturbations.

Introduction

Complex physical systems are mathematically modelled as dynamical systems. Equilibrium
and steady states, if they exist, are determined and characterized by �xed points and limit
cycles/tori of the corresponding differential equations [92]. For deterministic dynamical
systems, the latter equations should be complemented by stochastic terms to account for
unavoidable perturbations from unaccountable environmental degrees of freedom [124]. A
central question of broad interest is to determine the magnitude and statistical properties
of the relevant stochastic terms that could lead to the loss of equilibrium or induce transi-
tions between different local equilibria. Some physically important situations where such
stochastic escape phenomena may occur are electric power grids with high penetration of
�uctuating renewable energy sources [82, 4, 107], superconducting rings [53] and Josephson
junction arrays [64] subjected to noisy magnetic �elds, as well as neuronal systems subjected
to synaptic, ion-channel, neurotransmitter or membrane potential noise [22, 80].

Despite decades of investigations, theoretical studies of problems related to stochastic escape
are generally extensions of the pioneering work of Kramers [75], which relates chemical reac-
tion rates to action integrals between different potential minima. The problem is analytically
tractable in low dimensions only (see also Ref. [41]), and several recent works considered noise-
induced large �uctuations in the dynamical behavior of higher-dimensional network-coupled
systems through the numerical determination of action minimizing paths [38, 107, 60, 61].
A better analytical understanding of the interplay of noise characteristics with the network
topology is clearly desirable.

For some noisy coupled dynamical systems, escapes from a basin of attraction can be related
to noise characteristics and to the topology of the interaction network. For suf�ciently weak,
bounded noise, �uctuations are small and there is no stochastic escape [79]. Noise makes the
system �uctuate about its equilibrium, and typical deviation amplitudes can be evaluated from
a linearized dynamics about the equilibrium [7, 121, 57]. The situation becomes fundamentally
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Figure 5.1 � Time evolution of the winding number q for Eq.(5.1) on a single-cycle network
with n ˘ 83 nodes, m ˘ 0 (red lines) and m

d / d
‚2

˘ 10/175 (blue dashed lines). (a) Noise with
short correlation time ‚2¿0/d ˘ 5.7¢10¡4. (b) Noise with longer correlation time ‚2¿0/d ˘ 0.03.

different for stronger noise. For Kuramoto-like models, Eq. (5.1), with additive Ornstein-
Uhlenbeck noise, this is illustrated in Fig. 5.1, which shows the time-evolution of the winding
number q (de�ned in Sec. 5.4), characterizing different equilibrium �xed points. Changes in q
indicate that the system visits other basins of attraction, surrounding different equilibrium
states. Below we use q to detect transition from one basin to another. Depending on the
oscillators’ inertia and the noise amplitude and correlation time, this happens more or less
quickly and for longer or shorter periods of time. Due to the high dimensionality of the state
space and the nonlinear coupling between oscillators, the exact shape and size of the basins
are impossible to capture [128, 86, 35], consequently, the escape time from one basin is hard to
predict. For the Kuramoto model with cyclic interactions, DeVille [38] showed that the escape
time scales as the exponential of the potential barrier height between the initial and �nal
equilibrium states. In the spirit of Kramers [75], Hindes and Schwartz [60, 61] further relate the
escape time to the numerically computed action on the action-minimizing trajectory between
the two equilibria. In higher dimensions it is hard to see how these approaches could give
analytical estimates other than in speci�c situations.

In this paper we propose a resolutely different approach to stochastic escape from stable equi-
libria in complex, network-coupled dynamical systems, incorporating noise characteristics as
well as network dynamics and topology. We focus on synchronous �xed points of Kuramoto-
like models [i.e., �µi (t) ˘ �µ j (t) , 8 i , j , t ], but stress that the approach is applicable to more
general systems. We subject the initial, synchronous state to additive Ornstein-Uhlenbeck
noise. Linearizing the dynamics about the synchronous state, we calculate the standard
deviation of the noise-induced �uctuations about that state. The linearized dynamics is no
longer accurate when the standard deviation exceeds some threshold distance Dc . Clearly,
Dc is bounded from above by the distance ¢ between the stable synchronous state and the
closest saddle point to the next basin of attraction. We postulate that Dc is parametrically
proportional to ¢. This postulate allows us to derive a criterion for stochastic escape based on
the distance ¢ between the initial stable synchronous �xed point and the nearest saddle point
and not as in Kramers’ and other approaches [75, 38, 107, 60, 61] on their potential height
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difference. We validate numerically our postulate that Dc » ¢ for four, very different networks
and furthermore show that it gives precise estimates for the �rst stochastic escape time. We
note that similar linearization procedures have been used in a different context in Ref. [101] to
predict transitions in an evolutionary ecology model.

The paper is organized as follows. In section 5.2, we introduce our model of coupled oscillators
and give analytical expressions for the response induced by noisy perturbations. Section
5.3 describes our criterion for stochastic escapes, and section 5.4 illustrates numerically our
theory. Our conclusions are given in section 5.5.

The Model

We consider generic, Kuramoto-like models of nonlinearly coupled oscillators on complex
graphs de�ned by the differential equations [77]

m ¤µi ¯ d �µi ˘ Pi ¡
X

j
ai j sin(µi ¡µ j ) . (5.1)

Oscillators with inertia m and damping parameter d are described by compact angle coor-
dinates µi 2 (¡…,…] and natural frequencies Pi 2 R. They are located on nodes i ˘ 1, ...,n
of a connected coupling network de�ned by the adjacency matrix, ai j ‚ 0. Without loss of
generality, we consider

P
i Pi ˘ 0, which is equivalent to considering the system in a rotating

frame, because Eq. (5.1) is invariant under µi (t) ! µi (t) ¯ ›t , Pi ! Pi ¯ d ›. For bounded
distributions of natural frequencies on small enough intervals, synchronous states exist with
�µi · 0, 8i .

We consider a stable synchronous state µ(0) ˘ (µ(0)
1 , . . . ,µ(0)

n ) corresponding to natural fre-
quencies P (0). We subject this state to a time-dependent perturbation P (t) ˘ P (0) ¯ –P (t).
Linearizing the dynamics de�ned by Eq. (5.1) with µ(t ) ˘ µ(0) ¯–µ(t ), one obtains

m – ¤µ ¯ d – �µ … –P ¡L({µ(0)
i })–µ , (5.2)

with the weighted Laplacian L({µ(0)
i }) de�ned by

Li j ˘

(
¡ai j cos(µ(0)

i ¡µ(0)
j ) , i 6˘ j ,

P
k ai k cos(µ(0)

i ¡µ(0)
k ) , i ˘ j .

(5.3)

This matrix is positive semide�nite, with a single eigenvalue ‚1 ˘ 0 and associated eigenvector
u1 ˘ (1,1,1, ...1)/

p
n, while ‚fi ¨ 0, fi ˘ 2,3, ...n.

The dynamics of Eq. (5.2) is characterized by different times scales. The �rst one characterizes
the noisy perturbations. We consider spatially uncorrelated noise with vanishing average and
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Ornstein-Uhlenbeck correlator

h–Pi (t1)–P j (t2)i ˘ –i j –P 2
0 exp[¡jt1 ¡ t2j/¿0] . (5.4)

Thus, the perturbation is characterized by its variance, –P 2
0 and its correlation time, ¿0 ¨ 0. The

second time scale is m/d . It gives the typical time over which local excitations are damped by
d , neglecting the network dynamics. Finally, one has a set of time scales d/‚fi, fi ˘ 2, ...n, each
of them de�ned by the ratio of the damping parameter and an eigenvalue of the Laplacian.
For m/d ¨ d/4‚fi these are related to oscillation time scales of the Laplacian modes, while for
m/d ˙ d/4‚fi they relate to network-dynamical corrections to the damping time scale. We
consider ¿0 as a tunable parameter allowing us to explore different regimes depending on its
relation with m/d and d/‚fi.

We measure the distance between the state of the system and the initial synchronous state
as the square root of the variance h–µ2(t)i ˘

P
i h[–µi (t) ¡ –µ(t)]2i with –µ(t) ˘ n¡1 P

i –µi (t)
and brackets indicating an average over different realizations of noise with the same �rst
two moments. It appropriately gives the standard deviation of the angle deviations in the
subspace orthogonal to u1, because displacements in that subspace do not change the state.
To calculate h–µ2(t )i, we expand angle deviations over the eigenbasis of L and solve Eq. (5.2)
for the coef�cients of that expansion [123, Appendix 5.6.1]. We obtain the long-time limit

lim
t!1

h–µ2(t )i ˘ –P 2
0

X

fi‚2

¿0 ¯ m/d
‚fi(‚fi¿0 ¯ d ¯ m/¿0)

. (5.5)

In the two limits of long and short ¿0, one has

lim
t!1

h–µ2(t )i ’

8
>>><

>>>:

–P 2
0 ¿0

nd
Kf1 , ¿0 ¿ d

‚fi
, m

d ,

–P 2
0

n
Kf2 , ¿0 À d

‚fi
, m

d ,

(5.6)

with Kfp ˘ n
P

fi‚2 ‚¡p
fi [71, 121]. Interestingly, none of these asymptotics depend on inertia.

Escape from the basin

The dynamics of Eq. (5.1) is described by a vector function µ(t ) following the gradient of the
potential

V (µ, t ) ˘
nX

i˘1
Pi (t )µi ¡

X

i , j
ai j

£
1 ¡ cos(µi ¡µ j )

⁄
, (5.7)

starting from µ(t ˘ 0) ˘ µ(0). When the noisy perturbation tilts this potential strongly enough,
µ can escape the basin of attraction of µ(0). DeVille showed that, for not too large –P0, the
system almost surely escapes the basin in a neighborhood of a saddle point with a unique
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unstable direction, which we call 1-saddle [38]. Comparing the typical distance between µ
and µ(0) of Eq. (5.5) with the distance ¢ between µ(0) and its closest 1-saddle ’ gives us a
parametric condition for noise-induced stochastic escape

–P 2
0

X

fi‚2

¿0 ¯ m/d
‚fi(‚fi¿0 ¯ d ¯ m/¿0)

• ¢2 . (5.8)

Our task is therefore to identify the position of the 1-saddles. This is in general no trivial
task because the geometry of basins of attraction in such high-dimensional problems is
impossible to fully capture. For single-cycle networks with identical frequencies, 1-saddles
can be identi�ed analytically [38, 35]. For more general networks, we give in Appendix 5.6.4
a numerical algorithm which locates 1-saddles ’ and constructs the distribution of their
distance to µ(0).

Numerical simulations

We �rst check Eq. (5.8) against numerical simulations of the Kuramoto model of Eq. (5.1) with
m ˘ 0. We consider four different networks (see Appendix 5.6.3) with constant couplings b0 ˘ 1
and identical frequencies, which are a single-cycle network with nearest-neighbor coupling,
a single-cycle with nearest- and 3rd-neighbor coupling, a model of the UK transmission
network and a realization of a small-world network [126]. At each node, natural frequencies
are perturbed by spatially uncorrelated Gaussian noisy sequences –Pi (t ) satisfying Eq. (5.4).
We integrate the dynamics of Eq. (5.1), using a 4th-order Runge-Kutta method, during an
observation time Tobs, and check for a stochastic escape at every time step. Our method
for detecting such occurrences is based on Refs. [40, 34, 85] which showed that on meshed
networks, different �xed-point solutions of Eq. (5.1) correspond to different vectors of winding
numbers q . While winding around a cycle of a meshed network, the sum of angle differences is
an integer multiple of 2…. This integer is the winding number q on the corresponding cycle of
the interaction graph. Such winding numbers can be de�ned on each cycle of the network and
form together a winding vector q . Refs. [38, 61] observed that transitions between different
such equilibrium states occur by phase slips of few oscillators, and we show in Appendix
5.6.2 that these slips can be detected by recording the time evolution of q , as illustrated on
Fig. 5.1. We therefore detect desynchronizing events through variations of winding numbers.
For each set of noise parameters –P0 and ¿0 we perform several calculations corresponding to
different noise realizations. Fig. 5.2 shows the fraction P of runs that remain in the initial basin
for t • Tobs. The parameter space is sharply divided into (a) the red region (denoted U for
"unstable") where all runs left the basin of attraction before Tobs, (b) the blue region (denoted
S for "stable"), where none of the runs left the initial basin of attraction and (c) a rather narrow
intermediate region between U and S where some runs left and some runs stayed in the initial
basin.
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Figure 5.2 � Color-coded survival probability P for Eq. (5.1) with m ˘ 0. (a) Single-cycle network
with n ˘ 83 and nearest-neighbor coupling; (b) single-cycle network with n ˘ 83, nearest- and
3rd-neighbor coupling; (c) UK transmission network with n ˘ 120; (d) small-world network
with n ˘ 200 nodes. Yellow dashed lines give the boundary of the region of validity of the
inequality in Eq. (5.8) with m ˘ 0 and ¢ obtained analytically for panel (a) and numerically for
panels (b-d). Observation times Tobs correspond to comparable dimensionless parameters
‚2Tobs/d ˘ 143 (a), 143 (b), 130 (c) and 115 (d).

It is quite remarkable that the intermediate region (c) is qualitatively if not quantitatively
identi�ed by Eq. (5.8) with a network-dependent ¢. As discussed above, ¢ is given by a typical
distance between the initial stable �xed point µ(0) and the nearest saddle point ’ roughly
giving the smallest linear size of the basin of attraction. For the single-cycle network, all
1-saddles are located at the same distance from µ(0), which can be obtained analytically [38].
For the other three networks, many, though likely not all 1-saddles are identi�ed numerically.
The detailed methods for �nding 1-saddles are given in Appendix 5.6.4. For the single-cycle
network with nearest- and 3rd-neighbor coupling, the distance ¢ from µ(0) only takes a few
different values of which we only consider the most representative. For the UK and small-
world networks, on the other hand, we �nd a distribution of ¢ 2 [¢min,¢max], which is likely
due to the complexity of those meshed networks. The yellow dashed lines in Fig. 5.2 then
indicate our theoretical prediction Eq. (5.8) for the obtained value ¢ for the two single-cycle
networks and for values of ¢ corresponding to the 25th, the 50th and the 75th percentiles
of the distribution of ¢ for the UK and small-world networks. In all cases, the shape of the
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Figure 5.3 � Color-coded survival probability P for Eq. (5.1) with m ˘ 0 for a single-cycle
network with n ˘ 83 and nearest-neighbor coupling; ‚2Tobs/d ˘ 14.3 (a), 143 (b), 569 (c). The
yellow dashed line give the boundary of the region of validity of the inequality in Eq. (5.8) with
m ˘ 0 and ¢ obtained analytically.

Figure 5.4 � Escape time Tesc from the initial basin of attraction vs. noise amplitude, –P0, for
cycle networks with n ˘ 83 (a), n ˘ 249 (b), and for the UK transmission network (c). The noise
correlation time corresponds to ‚2¿0/d ˘ 8.6¢10¡3 (a), ‚2¿0/d ˘ 9.6¢10¡4 (b) and ‚2¿0/d ˘ 0.02
(c). Blue circles are averages over 40 realizations of noise. Red crosses correspond to Eq. (5.9),
with fl »̆ 5/8 (a-b) and fl »̆ 2/5 (c).

boundary is well predicted. For the more complex UK transmission network, Fig. 5.2(c), there
is a horizontal shift between theory and numerics, presumably due to to stronger anisotropies
of the basins of attraction in this more complex network, effectively requiring a larger Tobs.

In the case of bounded noise, we expect an inertialess system to remain in its initial basin
for weak enough noise [79]. However, the noise considered in our case is Gaussian and
arbitrarily large excursion will occur if one waits long enough. As a matter of fact, we found
that increasing Tobs shifts the boundary between stable and unstable regions to lower –P0.
We evaluated the in�uence of the observation time by reproducing Fig. 5.2(a) with different
Tobs. This is shown in Fig. 5.3 where we performed simulations for the cycle, increasing the
observation time. Fig. 5.3 shows the fraction of simulations that stay in the initial basin of
attraction after an observation time satisfying ‚2Tobs/d ˘ 14.2 [Fig. 5.3(a)], 142.4 [Fig. 5.3(b)],
569 [Fig. 5.3(c)], for a cycle network with n ˘ 83 nodes. As Tobs increases exponentially, we
observe the boundary between regions U and S drifting to the left due to the escape time that
is superexponential as –P0 decreases.
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5.4. Numerical simulations

Figure 5.5 � Color-coded difference in survival probability P with and without inertia for a
single-cycle network with n ˘ 83 with nearest- and 3rd-neighbor coupling obtained from 20
realizations of noise; (a) m

d / d
‚2

˘ 0.25/0.35, (b) 2.5/0.35 and (c) 25/0.35. The yellow dashed
lines give the boundary of the region of validity of the inequality in Eq. (5.8), as discussed in
the main text.

Fig. 5.4 further shows the stochastic escape time as a function of –P0. A superexponential
behavior is observed which can be understood as follows. The noise generates a distribution of
angle deviations which we expect to be Gaussian with a variance given by Eq. (5.5). The escape
time is then inversely proportional to the probability to have such a deviation exceeding ¢, i.e.

Tesc /
•

2
Z 1

fl¢
P (–µ)d(–µ)

‚¡1
(5.9)

with a free parameter fl of order 1. Fig. 5.4 validates this argument using a Gaussian distribution
of single-angle deviation P (–µ) with variance h–µ2(t )i/n, see Eq. (5.5). We have found, but do
not show, that Tesc diverges at a �nite value of –P0 for a box-distributed, bounded noise.

We �nally consider Eq. (5.1) with nonzero inertia. We focus on the single-cycle network with
nearest- and 3rd-neighbor coupling, and tune the inertia parameter m to explore different
regimes de�ned by the different time scales of Eq. (5.1). Fig. 5.5 shows the difference in
survival probabilities with and without inertia in the regimes (a) d/‚fi & m/d , (b) d/‚fi . m/d
and (c) d/‚fi ¿ m/d . Deep in the stable (unstable) regions, both inertialess and inertiaful
models have P ˘ 1 (P ˘ 0) and the difference P(m ˘ 0)¡P(m) ˘ 0. Somehow counterintuitively,
however, there is an intermediate region where the presence of inertia facilitates stochastic
escape compared to the inertialess case, P(m ˘ 0) ¡P(m) ¨ 0. The boundary of that region are
in excellent agreement with the prediction of Eq. (5.8), giving the two dashed yellow lines for
m ˘ 0 and m 6˘ 0.

For large ¿0, the faster escape of the system with �nite inertia is easily understood. With long
correlation time, the noise tends to push the system in the same direction for long sequences.
This is suf�cient to have the inertiaful system accumulate a signi�cant kinetic energy. The
system keeps then moving, even if, after some time, the noise starts pushing the other way
and allows it to move above a saddle point with inertia, whereas the inertialess system is
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immediately stopped by noise reversal.

For smaller ¿0, on the other hand, inertia resists short sequences of pushes in rapidly varying
directions and accordingly, we found that inertia stabilizes the system in that case (see Ap-
pendix 5.6.5). This is not predicted by Eq. (5.8) and is probably due to contributions beyond
our linear response theory, because discrepancies appear for values of –P0 comparable to the
coupling strength a0. The in�uence of inertia on stochastic escapes is perhaps best illustrated
in Fig. 5.1, where the presence of inertia stabilizes the system under short-correlated noise
[panel (a)] but leads to more frequent stochastic escapes for long-correlated noise [panel (b)].

Conclusion

We have constructed a novel approach to stochastic escape. We compare a spectral calcula-
tion of typical sizes of stochastic excursions about synchronous equilibrium states with an
evaluation of the distance between this synchronous equilibrium state and 1-saddles. This
method provides analytical results with a single, model-dependent free parameter of order
one [fl in Eq. (5.9)]. It gives remarkably accurate estimates for stochastic escape times, as is
illustrated in Fig. 5.4. Even if, in this work, we considered networks of coupled oscillators, our
method can be applied to any dynamical system where some stable �xed points and 1-saddles
are available, and the linearization of the dynamics in a neighborhood of the considered
�xed point is possible. The distance ¢ between stable �xed points and 1-saddles, and the
eigenvalues of the linearization of the dynamical system are the main ingredients of Eq. (5.8),
which determine regions where escape is unlikely in reasonable time.

In the context of coupled oscillators, we interestingly observed that the presence of inertia
leads to faster, more frequent escapes for long noise coherence times, while the effect is
reversed for short noise coherence times. This is illustrated in Fig. 5.1. Further studies
should consider the effect of spatially correlated noise and non-Gaussian, long-tailed noise
distributions [57].

Appendix

Details of Calculations for the variance of the angle displacements

We give some details of the calculation that leads to Eq. (5.5). Expanding the angle deviations
over the eigenmodes of the Laplacian Eq. (5.3), i.e., –µ(t ) ˘

P
fi cfi(t )ufi, Eq. (5.2) becomes,

m ¤cfi(t ) ¯ d �cfi(t ) ˘ –P (t ) ¢ ufi ¡‚ficfi(t ) , fi ˘ 2, ...,n . (5.10)
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With the help of a Laplace transform, the solution of Eq. (5.10) is given by

cfi(t ) ˘ m¡1e
¡d/m¡¡fi

2 t
Z t

0
e¡fit 0

Z t 0

0
–P (t 00) ¢ ufie

d/m¡¡fi
2 t 00

d t 00d t 0 , (5.11)

with ¡fi ˘
p

(d/m)2 ¡ 4‚fi/m. Taking advantage of the orthogonality between eigenmodes of
the Laplacian we have,

h–µ2(t )i ·
X

i
h[–µi (t ) ¡–µ(t )]2i ˘

X

fi‚2
hc2

fi(t )i , (5.12)

with –µ(t ) ˘ n¡1 P
i –µi (t ). Inserting Eq. (5.10) into Eq. (5.12), using the time correlator of –P

Eq. (5.4), and �nally taking the long time limit one obtains, after some algebra, Eq. (5.5).

Method to determine escape times

Various methods can be used to determine, at any iteration step of the simulation, if the
system under consideration has escaped its initial basin of attraction. We compared three of
them, which we detail here.

Method 1. As stated above, stable equilibria of Eq. (5.17) can be unambiguously distinguished
by their winding vector q . The method that we used for the numerical simulations proceeds
as:

1. At each time step, compute q ;

2. If q 6˘ q (0) the winding vector of the initial basin of attraction, check if the system is
still in the initial basin. To do so, simulate the dynamics without noise, taking the
current state of the system as initial conditions. Once synchrony is reached, compute
the winding vector q (1);

3. If q (1) 6˘ q (0), then the system was out of the initial basin. Otherwise, if q (1) ˘ q (0), the
system was still in the basin and thus the simulation can move to the next time step.

Method 2. This method is based on DeVille’s observation [38] that escapes from basins of
attraction occur on a short time interval and can be identi�ed by a fast slip of a small group of
angles. It proceeds as:

1. At each time step, check if some angles made a large excursion, i.e., kµ(t ) ¡µ(0)k1 ¨ 2…;

2. If so, then simulate the dynamics without noise, taking the current state of the system
as initial conditions, until it synchronizes to the state µ(1);

3. If µ(1) 6˘ µ(0), then the system was out of the initial basin. Otherwise, if µ(1) ˘ µ(0), the
system was still in the basin and thus the simulation can move to the next time step.
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Simulation Method q (1) No. iterations

1
1 -1 400
2 -1 400
3 -1 400

2
1 -1 685
2 -1 685
3 -1 685

3
1 -1 558
2 -1 558
3 -1 550

4
1 1 1609
2 1 1609
3 -1 950

5
1 -1 1664
2 -1 1664
3 -1 1249

6
1 1 1887
2 1 1887
3 -1 1151

Table 5.1 � Final winding number q (1) and number of iterations before the escape for m ˘ 0
(simulations 1-3) and �nite inertia (simulations 4-6). Each triplet is obtained by integrating
Eq. (5.1) with the same noise sequence.

Method 3. Finally, we tested the method in which we check at every time step whether the
system returns to the initial basin or not. This method guarantees to �nd the best estimate of
the escape time, at least for the Kuramoto model (m ˘ 0), but is very time-consuming.

Table 5.1 compares escape times and �nal winding numbers for a single-cycle of n ˘ 83 nodes.
For the Kuramoto model (m ˘ 0) the three methods give very similar results. For the case with
inertia, the �rst two give larger escape times compared to the last method. We explain this as
follows. When the noise is removed, the system may have accumulated some kinetic energy
that will drive it out of the basin of attraction. And this can happen before the winding number
changes or a large angle excursion occurs. Furthermore, if the perturbation was still active, it
could have pushed the system back towards the stable �xed point before it leaves the basin of
attraction, increasing the escape time.

The four networks

We brie�y describe the networks used for the numerical simulations.
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Figure 5.6 � Maximum value –P⁄
0 of the noise amplitude obtained from Eqs. (5.14), (5.15) for

large (blue) and short (green, red) time correlation, ¿0, as a function of the size of the cyclic
network n. For the red curve, we consider a constant ratio ¿0/d ˘ 0.001. For the green curve
we consider a constant ratio ‚2¿0/d ˘ 0.001 where ‚2 ˘ 2 ¡ 2cos(2…/n) depends on the size of
the network.

Cycle with nearest neighbors coupling

We consider a cycle network of size n, with identical natural frequencies. The eigenvalues of
its weighted Laplacian, Eq. (5.3), can be obtained analytically,

‚fi ˘ cos(–)[2 ¡ 2cos(kfi)] , fi ˘ 1, ...,n , (5.13)

where – is the angle difference between neighboring sites (which are identical at a stable
equilibrium [33]) and kfi ˘ 2…(fi¡ 1)n¡1. For n ˘ 83 we have ‚fi 2 [0,4cos(–)] and ‚2 ˘ 0.0057.

Eq. (5.6) can be explicitly calculated for cyclic networks as functions of the number of nodes n

–P 2
0 •

…2dn
¿0(n ¡ 2)2 , ¿0 ¿ d/‚fi ,m/d , (5.14)

–P 2
0 •

60…2n
(n ¡ 2)2(n2 ¯ 11)

, ¿0 À d/‚fi ,m/d . (5.15)

Fig. 5.6 shows the maximum values of –P0 satisfying Eqs. (5.14), (5.15). One remarks that, while
increasing the size of the cycle, the stable region gets smaller and even vanishes for n ! 1
similarly to �uctuations that destroy long-range order in 1 dimensional locally interacting
quantum magnets [51].
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Figure 5.7 � (a) Illustration of the connections of a vertex to its �rst and second neighbors
on a cycle. (b) Illustration of the connections of a vertex to its nearest- and 3rd-neighbors
on a cycle. (c) Illustration of the UK network with n ˘ 120 vertices and m ˘ 165 edges. (d)
Illustration of our small world network with n ˘ 200 vertices. Its relative clustering coef�cient
is C (Gp )/C (G0) … 0.89 and its relative characteristic path length is L(Gp )/L(G0) … 0.32.

Cycle with nearest- and 3rd-neighbors coupling

We consider a cycle network of size n, where each vertex is connected to its nearest- and 3rd-
neighbors [see Fig. 5.7(b)]. With identical natural frequencies, the eigenvalues of its weighted
Laplacian, Eq. (5.3), can be obtained analytically,

‚fi ˘ cos(–)[4 ¡ 2cos(kfi) ¡ 2cos(3kfi)] , fi ˘ 1, ...,n , (5.16)

where – is the angle difference between neighboring sites (which are identical at a stable
steady-state [33]) and kfi ˘ 2…(fi¡ 1)n¡1. For n ˘ 83 we have ‚fi 2 [0,8cos(–)] and ‚2 ˘ 0.057.

UK transmission grid

Model of the electrical transmission grid of UK depicted in Fig. 5.7(c). It is composed of 120
nodes and 165 edges making 44 cycles. During the numerical simulations, to check whether
the system has left the initial basin of attraction or not, we check the winding number on each
cycle, i.e., the winding vector q ˘ (q1, ..., q44). The second eigenvalue of its Laplacian matrix is
‚2 … 0.013.

Small world

A small world network is constructed from an initial network, where some edges are randomly
rewired (see [126]). In our case, the initial network G0 is a cycle with n ˘ 200 vertices and where
each vertex is connected to its �rst and second neighbors [see Fig. 5.7(a)]. Each edge (i , j ) is
then replaced with probability p ˘ 0.05 by the edge (i ,k), where k is chosen at random among
the vertices not already connected to i . The network obtained Gp is illustrated in Fig. 5.7(d). It
is a small world as it has a large relative clustering coef�cient C (Gp )/C (G0) … 0.89 and a small
relative characteristic path length L(Gp )/L(G0) … 0.32 (see [126] for more details). The second
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eigenvalue of its Laplacian matrix is ‚2 … 0.046.

Finding 1-saddles

We detail our methods for �nding 1-saddles (equilibria with a unique unstable direction) of
the dynamical system

mi ¤µi ¯ di �µi ˘ P (0)
i ¯–Pi (t ) ¡

X

j
ai j sin(µi ¡µ j ) , (5.17)

with i ˘ 1, ...,n, for arbitrary coupling graph.

Cycle Networks

For cycle networks with nearest neighbor coupling and identical natural frequencies, the
distance between the stable equilibrium µ(0) ˘ (0, ...,0), and the 1-saddle ’, can be computed
analytically as [35]

¢2 ˘
°°µ(0) ¡’

°°2
2 ˘

n(n2 ¡ 1)
12(n ¡ 2)2 …2 . (5.18)

General Networks

For general networks, the anisotropy of the basins of attraction renders the 1-saddles compli-
cated to identify analytically. We propose a numercial method to locate 1-saddles, which is
based on two results of DeVille [38]:

� Escapes from basins of attraction almost always occur in a neighborhood of a 1-saddle
of the potential

V (µ) ˘
nX

i˘1
P (0)

i µi ¡
X

i˙ j
ai j

£
1 ¡ cos(µi ¡µ j )

⁄
; (5.19)

� Transitions from a basin to another occur on a short time interval compared to the time
the system remains in a basin of attraction.

We numerically integrate Eq. (5.17), where –Pi is a noise with small variance, and keep track
of the angles in order to identify iterations where the system is close to a 1-saddle. As observed
in [38], when the system is driven (by the noise) to another basin of attraction, its trajectory
goes close to a 1-saddle, and this can be seen in the time-evolution of the angles as a fast jump
of a set of angles of amplitude 2… (see Fig. 5.8). The state ’(0) of the system in the middle of
this jump will be a candidate for a 1-saddle. This state is probably not exactly a 1-saddle, but
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Figure 5.8 � Example of the time evolution of the 120 angles of the UK network [Fig. 5.7(c)]. We
clearly see two angles jumping from a value close to 0 to a value close to 2…. The state of the
system at the time given by the vertical dashed line is our candidate for a 1-saddle ’.

according to [38], it should be close to one. We then solve the steady-state equations

P (0)
i ˘

X

j
ai j sin(µi ¡µ j ) , i ˘ 1, ...,n , (5.20)

using a Newton-Raphson method with initial conditions ’(0). This gives an equilibrium ’⁄ of
Eq. (5.17), which we expect to be close to µ(0). Computing the eigenvalues of the Jacobian of
Eq. (5.17), the equilibrium ’⁄ is a p-saddle if and only if it has p positive eigenvalues. Note
that one eigenvalue is always zero due to invariance of Eqs. (5.17) and (5.19) under a constant
shift of all angles.

Running this simulation for a long enough time, we identi�ed:

� 284 1-saddles for the cycle with nearest- and 3rd-neighbor. The distribution of their
distance to the stable equilibrium µ(0) is given in Fig. 5.9(a). Looking more into details,
we observe that each value in Fig. 5.9(a) corresponds to a unique 1-saddle, up to an
index shift or the angles’ sign reversal. The 1-saddles with the two smallest norm, ’(1)

and ’(2), are represented in Fig. 5.10. The �rst one [Fig. 5.10(a)] has the smallest 2-norm,
but its con�guration with n ¡ 1 equal angles and one angle … apart from all others is,
in our opinion, unlikely to occur. As we consider noisy perturbation at all nodes, a
con�guration with a single large angle excursion and no excursion for all other nodes
seems less likely than a con�guration where all angles are slightly displaced from their
neighbors. We performed our study using ’(2) as 1-saddle for the cycle with nearest-
and 3rd-neighbor.
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Figure 5.9 � Histograms of the 2-norm distance from the �xed point of the set of 1-saddles
found numerically for the cycle with 3rd-neighbor (a), the UK network (b), and the small
world network (c). We found: (a) 284 1-saddles for the cycle with 3rd-neighbor, with smallest
2-norm nmin … 3.12, and quartiles of the 2-norms (Q1,Q2,Q3) … (3.12,8.61,8.61); (b) 788 1-
saddles for the UK network, with smallest 2-norm nmin … 3.13, and quartiles of the 2-norms
(Q1,Q2,Q3) … (7.24,10.02,12.17); and (c) 4956 1-saddles for the small-world network, with
smallest 2-norm nmin … 3.13, and quartiles of the 2-norms (Q1,Q2,Q3) … (10.74,12.13,13.95).
The yellow dashed lines indicate the three quartiles Q1, Q2, and Q3, and the red dashed lines
indicate the norm of the closest 1-saddle.

Figure 5.10 � The two 1-saddles, ’(1) and ’(2), with smallest 2-norm, for the cycle network,
with nearest- and 3rd-neighbors. (a) ’(1): all angles are equal, except one which is … apart
from all others. The 2-norm of this 1-saddles is » 3.12. (b) ’(2): all angles are slightly displaced
compared to their neighbors. The 2-norm of this 1-saddle is » 8.61. This con�guration is, in
our opinion, more likely to occur under noisy perturbations applied to all nodes.

� 788 1-saddles for the UK network, whose distribution of the distances to the stable
equilibrium is given in Fig. 5.9(b). Distances cover a large range of value, due to the
anisotropy of the basin of attraction;

� 4956 1-saddles for the small-world network. The distribution of the distances to µ(0) is
given in Fig. 5.9(c). Most of the 1-saddles are at similar distance.
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Figure 5.11 � Color plot of the difference of fraction of trajectories that stay in the initial basin
of attraction with �nite inertia compared to m ˘ 0 for a cycle network of n ˘ 83 nodes. Time
scales are m

d

– d
‚2

˘ 10/175.

Linearization Breakdown

We showed that, according to our theory, inertia always destabilizes the system compared to
the inertialess case. However, for the cycle network, we found that for small ¿0 and large –P0,
inertia stabilizes the system, as illustrated on Fig. 5.11. The blue area where inertia stabilized
the system is not predicted by our theory, Eq. (5.8). This can be explained by the breakdown of
the linear approximation. Indeed, the blue region on Fig. 5.11 starts for value of the order of
the coupling –P0 »̆ a0 · 1.
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6 Overall Conclusion and Outlook

Many graph theoretic metrics have been de�ned over the years to identify most important
nodes in a network or to compare different networks. Most of these metrics have been con-
structed considering only networks’ structures decoupled from any deterministic dynamics.
In order to correctly identify vulnerabilities of coupled dynamical systems, these complex
network metrics need to be extended to account for physical conservation laws governing
such systems. We achieved such extension to assess vulnerabilities of complex synchronous
networks. We quanti�ed their transient responses to weak external perturbations and directly
connected them to newly de�ned distances that include both the topology of the coupling
network and the dynamical features of the synchronous states. These new distances are
generalization of the resistance distance originally introduced in Ref. [71], to powers of the
weighted Laplacian of the system. Both global robustness and local vulnerabilities are ef-
�ciently and accurately assessed using resistance distances. Indeed, on the one hand, by
considering the magnitude of transient excursion of ensemble averaged perturbations, we
directly connected global robustness of oscillatory networks to generalized Kirchhoff indices.
The latter are intuitively interpreted as the sum of all resistance distances in the network
and are easily obtained from the eigenvalues of the weighted Laplacian of the system. To
improve the overall robustness of an oscillatory network, one should minimize its Kirchhoff
indices. On the other hand, we straightforwardly related magnitude of the transient follow-
ing speci�c local perturbations to generalized resistance centralities. We constructed these
latter as closeness centralities using resistance distances. Moreover they are easily expressed
in term of the eigenvectors and eigenvalues of the weighted Laplacian of the system and
Kirchhoff indices. Most vulnerable elements, leading to largest excursion, are then the least
central according to resistance centralities. With Kirchoff indices and resistance centralities
respectively as global and local network descriptors, we have de�ned an ef�cient and intuitive
framework to evaluate vulnerabilities of complex synchronous networks. Additionally, we
found that, for second order oscillators, inertia does not affect much transient excursions. The
formalism we developed is rather general and therefore may also be useful to analyze other
types of dynamical systems. Current work under preparation focuses on the extension of the
above results to oscillators with non-homogeneous dynamical parameters namely inertia
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and damping coef�cients. In that case, distances similar to resistance distances can still be
de�ned but this time out of a rescaled Laplacian D¡1/2LD¡1/2 where D is the diagonal matrix
of damping coef�cients.

We then considered robustness of coupled oscillators against larger perturbations that can
potentially drive the system through a transition to another stable �xed point. More precisely
we investigated couple oscillators subjected to noise and found a simple heuristic criterion to
predict escape from the initial basin of attraction. Using linear response and little knowledge
about the structure of the basin of attraction, we obtained estimates for the survival probability
and �rst escape time as function of the noise characteristics and eigenvalues of the weighted
Laplacian of the system. The latter estimates were surprisingly well validated by numerical
simulations. Moreover, we showed that, most of the time, increasing the inertia of oscillators
tends to facilitate transitions between �xed points. Interestingly, the heuristic criterion used is
rather general and thus may be applied to other dynamical systems.

In summary, we have investigated fragility of coupled oscillators systems from both their
small-signal responses and the potential transitions they may undergo due to larger pertur-
bations. In both cases we have de�ned frameworks allowing to assess and predict ef�ciently
vulnerabilities.

Possible extensions of the results presented in this thesis should include topological perturba-
tion such as edge removals. We recently made some progresses in that direction calculating the
rate of change of frequency�second time derivative of angles� following an edge removal [37].
Another direction of research building on presented results is about network inference and
disturbance location. As network response can be directly connected to a complex network
metric, namely resistance distances, by measuring the response of the system subject to noise
or to some known input signal, one may be able to infer the connectivity of the system. Current
works on that topic are under preparation. Note also that the results obtained for coupled
oscillators can be adapted to investigate consensus algorithms and opinion dynamics [12].
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