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Abstract—The Kron reduction is used in power grid modeling
when the analysis can – supposedly – be restricted to a subset of
nodes. Typically, when one is interested in the phases’ dynamics,
it is common to reduce the load buses and focus on the generators’
behavior. The rationale behind this reduction is that voltage
phases at load buses adapt quickly to their neighbors’ phases and,
at the timescale of generators, they have virtually no dynamics.
We show that the dynamics of the Kron-reduced part of a
network can have a significant impact on the dynamics of the
non-reduced buses. Therefore, Kron reduction should be used
with care and, depending on the context, reduced nodes cannot
be simply ignored. We demonstrate that the noise in the reduced
part can unexpectedly affect the non-reduced part, even under the
assumption that nodal disturbances are independent. Therefore,
the common assumption that the noise in the non-reduced part
is uncorrelated may lead to inaccurate assessments of the grid’s
behavior. To cope with such shortcomings of the Kron reduction,
we show how to properly incorporate the contribution of the
reduced buses into the reduced model using the Mori-Zwanzig
formalism.

Index Terms—Power system; Grid resilience; Kron reduction;
Mori-Zwanzig formalism.

I. INTRODUCTION

The resilience of networked systems is of primal importance
to ensure their reliability and operations. It is especially the
case for electric power grids, which have attracted tremendous
attention over the last decade due to the ongoing energy
transition [1], [2]. One way to evaluate the resilience of a
system is by quantifying its response to an external input [3],
[4], [5], [6]. In a high-voltage transmission grid, for instance,
one can wonder about the voltage phase response to a noisy
injection of power coming from a renewable energy source.

Such transmission grids are usually large-scale systems. As
a convenient way to render their analysis more tractable, it has
become standard to first apply a Kron reduction [7], [8]. By
taking the Schur complement [9, Sec. 0.8.5] of the dynamics
matrix of a system, the latter transformation only retains the
synchronous generators while reducing the loads into effective
line susceptances. Then, based on this initial reduction, previ-
ous studies focused on the resilience to disturbances occurring
at the non-reduced buses.

The rationale underlying the validity of the Kron reduction
boils down to that of timescale separation. Indeed, loads

typically respond much faster than conventional plants to
frequency disturbances. Loads then appear as passive nodes
in the timescale of the plants.

While the analysis of the Kron-reduced system allows to
approximate the vulnerability of synchronous generators, we
claim that such an approach is insufficient to accurately and
fully evaluate the resilience to external inputs. Obviously,
the reduced buses, which are typically loads, are subject to
disturbances too. In fact, their dynamics is mostly fluctuating
in time, as they are dictated by the consumption of power.
We show in this manuscript that, although the noise at the
reduced nodes is spatially uncorrelated, (i) its impact on non-
reduced nodes may be correlated and (ii) the magnitude of
said impact may be hard to predict. Importantly, we show that
summarizing the impact of the reduced nodes’ noise on the
non-reduced nodes to a white noise can be detrimental to an
accurate resilience estimation.

We propose a unified framework to assess the impact of
disturbances both at the reduced and non-reduced buses. First,
using Mori-Zwanzig formalism [10], [11], [12] , we take an
unconventional approach to account for the timescale separa-
tion assumed by the Kron reduction. We derive a general ex-
pression for the time-evolution of the slow buses as a function
of the fast ones. By expanding over the timescale separation
parameters (ϵ below), this naturally leads to the reduction of
the grid dynamics to degrees of freedom corresponding to
the synchronous generators. Applying this formalism, we also
account for the reduction of the disturbance, and explicitly
calculate their effect on the non-reduced buses.

Second, we assess the resilience of the grid by evaluating
the variance of the frequency deviations induced by time-
correlated noisy inputs. In particular, we can compare the
contribution from reduced and non-reduced buses to the vari-
ance of the frequency deviation. We show, through analytical
and numerical examples how misleading simulation of Kron-
reduced systems can be, if disturbances in the reduced part
are neglected.

II. PRELIMINARIES

Throughout the manuscript, we use 1N to denote the N -
dimensional vector of ones and IdN for the identity matrix
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of size N . In the following, we sometimes refer to buses as
nodes.

We model the voltage phase dynamics with the structure
preserving model [13] of the swing equations [14, Sec. 3.9.2].
Neglecting line conductances and voltage variations as a first
approximation, the dynamics of voltage phases resort to that
of a network of N nonlinearly coupled phases θi ∈ (−π, π],

mi θ̈i + di θ̇i = pi −
N∑
j=1

bij sin(θi − θj) + ηi , (1)

for i = 1, ... N . The effective inertia and damping at each
bus i are summarized in the constants mi and di respectively,
and pi denotes the power injected or withdrawn at that bus.
The coupling between the buses is given by the elements
of the adjacency matrix bij = Bij |Vi||Vj | where Bij is the
susceptance of the transmission line connecting buses i and
j and |Vi| is the voltage amplitude (assumed to be constant)
at bus i . The noise induced by local power variations ηi is
modeled by a time-correlated space-uncorrelated noise,

⟨ηi(t)ηj(t′)⟩ = σ2
i δij exp[−|t− t′|/τi] , (2)

where τi is the typical correlation time of the noise at the ith
node and δij is the Kronecker symbol. Note that one could
also consider space-correlated noise [15], [16]. Here, for the
sake of clarity, we stick to the common assumption of space-
uncorrelated noise and demonstrate how it is affected by the
reduction.

III. TIMESCALE SEPARATION IN THE SWING EQUATIONS

Timescale separation is the rationale underlying the use
of the Kron reduction. We formalize here what is meant
by timescale separation. Then, we present the Mori-Zwanzig
formalism that allows us to deal with the nontrivial impact of
reduced nodes.

A. Timescale Separation and Reduced Dynamics

In view of introducing the Kron reduction of the system, we
assume that we have two sets of buses that we denote F and
S , respectively with NF and NS nodes. Timescale separation
can be summarized in terms of inertia and damping properties,

di,mi ∝

{
d,m i ∈ F ,

d,m i ∈ S ,
(3)

with d ≪ d , m ≪ m . The latter means that buses belonging
to S have a much slower intrinsic timescale than those
belonging to F . The buses in F are the ones that will be
reduced by Kron reduction.

In the following, we focus on the dynamics of the buses
in the slow component. Within the assumption of timescale

separation, adapting parameter definitions accordingly, one can
rewrite (1) as

mi θ̈i + di θ̇i = pi −
N∑
j=1

bij sin(θi − θj) + ηi , i ∈ S,

ϵ (mi θ̈i + di θ̇i) = pi −
N∑
j=1

bij sin(θi − θj) + ηi , i ∈ F ,

(4)

where we defined m/m = d/d = ϵ−1 . In the limit ϵ → 0 ,
the buses within F instantaneously adapt their phases. In the
following we show how to reduce these buses.

B. System Response and Mori-Zwanzig Analysis

In order to assess the resilience of the system, we want
to analyze the frequency deviation from nominal value when
subject to noise. We therefore consider the system (4) in
the vicinity of a stable fixed point θ∗. In particular, we
are interested in the time-evolution of the phase deviations
xi(t) = θi(t)− θ∗i for i ∈ S and yi(t) = θi(t)− θ∗i for i ∈ F
whose dynamics at the first order read,

M

[
ẍ
ÿ

]
+D

[
ẋ
ẏ

]
=

[
JSS JSF
JFS JFF

] [
x
y

]
+

[
ηS
ηF

]
(5)

where we defined the diagonal inertia and damping matrices,

M =

[
MS 0
0 ϵMF

]
, D =

[
DS 0
0 ϵDF

]
, (6)

and the Jacobian matrix of the system

Jij =

{
bij cos(θ

∗
i − θ∗j ) i ̸= j

−
∑N

k=1 bik cos(θ
∗
i − θ∗k) i = j ,

(7)

which is a Laplacian matrix when phase differences are
between −π

2 and π
2 . Notice that for undirected coupling as

we consider in the following, one has JFS = J⊤
SF .

Ultimately, one would like to obtain a closed-form expres-
sion for the frequency at the generator buses as these are the
state variables relevant for the stability of the grid. To obtain
such expression, one can use Mori-Zwanzig formalism [10],
[11], [12] which was developed in statistical mechanics to
derive the time-evolution of relevant variables while treating
the rest of the variables as input noise. One can follow a similar
approach with x and y being respectively the relevant and
irrelevant variables, see [12] for more details.

For the sake of simplicity, we assume that the inertia and
damping parameters are homogeneous, i.e., mi = m , di = d
∀i . Nevertheless, simulations shown in Sec. V demonstrate
that similar results hold for heterogeneous parameters. One
can express the first row of (5) as,

mẍi + d ẋi =

NS∑
j=1

(JSS)ijxj + (ηS)i +

NF∑
j=1

(JSF )ij yj , (8)
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with

yi(t) =m−1ϵ−1
NF∑
α=1

e−(γ+Γα)t/2

∫ t

0

eΓαt1 (9)

×
∫ t1

0

[JFSx(t2) + ηF ] ·wαe
(γ−Γα)t2/2dt2dt1wα,i ,

where Γα =
√
γ2 − 4να/(mϵ) and we denoted wα the

eigenvectors of JFF with corresponding eigenvalues να < 0 .
Equation (8) is the equation of motion of the relevant variables.
The expressions (8) and (9) provide a general framework to
analyse how the irrelevant variables impact the relevant ones.
In the particular case where the two sets of variables evolve
on different timescales, one can expand (8) and (9) over the
timescale parameter ϵ to perturbatively calculate the effect of
y on x . Here we are interested in the limit ϵ → 0 and therefore
only consider the non-vanishing leading order in ϵ , which is
the zeroth order. Note however that one could calculate the
higher order correction by a Taylor expansion in ϵ . This limit
induces Dirac-delta distributions between t1 and t and between
t2 and t1 in (9) [12]. Indeed, one has,

lim
ϵ→0

m−1/2ϵ−1/2e−(γ+Γα)(t−t′)/2 = να
−1/2δ(t− t′) . (10)

Therefore, noticing that J−1
FF =

∑NF
α=1 να

−1wαw
⊤
α , one can

rewrite (8) in a matrix-vector form as,

M ẍ+D ẋ

= JSS x− JSF J−1
FF JFS x+ ηS − JSF J−1

FF ηF (11)
=: Jred x+ ξ ,

where in the last line we defined the reduced Jacobian
Jred := JSS − JSF J−1

FF JFS , and denoted the noise term
as ξ := ηS − JSF J−1

FF ηF . The reduced Jacobian is still a
Laplacian matrix [8]. The dynamics of the non-reduced buses
is then governed by (11) where the effective noise at the ith
bus is a combination of the noise at the ith bus and of a
superposition of the noise inputs at buses belonging to the
fast component. Therefore, in general ξ is correlated over the
different synchronous generators.

Now that we have performed the reduction using the Mori-
Zwanzig formalism, let’s compare (11) with the conventional
Kron-reduced model. The reduced Jacobian, Jred, is given by
the same expression in both cases. However, with the present
formalism, the validity of this approximation is well-defined
by the underlying assumptions. Since the Kron reduction is
inherently a static analysis method, it does not provide a clear
approach to properly define nodal noise signals. As a result,
uncorrelated inputs, ηS , are often used. These differ from the
noise signal ξ that we have derived in general.

The linear system (11) can be solved by expanding over the
eigenmodes of Jred denoted uα , with corresponding eigenval-
ues λα , α = 1, ...NS = |S| . As Jred is also the negative of
a Laplacian matrix, one has that 0 = λ1 ≥ ... ≥ λNS as its

eigenvalues, with u1,i = 1/
√
NS . The general solution to (11)

is given by,

xi(t) =

NS∑
α=2

(mΓα)
−1e−(γ+Γα)t/2 (12)

×
∫ t

0

[
e(γ+Γα)t′/2 + e(γ−Γα)t′/2

]
uα · ξ(t′) dt′uα,i ,

for i = 1, ..., NS and where we omitted the first mode in the
sum as any perturbation along it does not modify the system.
In the following we only consider the dynamics orthogonal to
the first mode. Eventually, we are interested in the variance
of the frequency deviations. Using the expression in (12) and
taking its time-derivative, one can calculate the moments of
the frequency deviations.

IV. RESILIENCE OF THE GRID

We are now ready to derive the correction term to the non-
reduced nodes’ dynamics after Kron reduction. Furthermore,
we provide a couple of idealized examples where the impact
of the Kron reduction is rather intuitive.

A. Fluctuations From the Synchronized State

Various characteristics of the response can be used to
determine the resilience of the coupled nodes. When subject to
stochastic inputs, a natural choice is to evaluate the magnitude
of the deviations from the synchronized fixed point by calcu-
lating the variance of the frequency deviations. As discussed in
Sec. II, we consider time-correlated noise inputs with different
typical correlation times in each component, denoted as τF and
τS respectively.

The center of inertia variance of the frequency deviations
orthogonal to the zero mode u1 in the slow component is
calculated from (12) and reads, in the long-time limit,

〈
ẋ2
i

〉
COI

:=
〈(

ẋi −N−1
S

NS∑
k

ẋk

)2〉
(13)

=

NS∑
α,β=2

NS∑
j=1

[
Uαβ
ij H(λα, λβ , τS , γ) + Γ

αβ

i H(λα, λβ , τF , γ)
]
,

where we defined the shorthand notations

Uαβ
ij = σS

2
juα,iuα,juβ,iuβ,j ,

Γ
αβ

i = Γαβ uα,iuβ,i ,

Γαβ = u⊤
αJSFJ

−1
FF diag

[
σ2
F
]
J−1
FFJFSuβ ,

(14)

and

H(λα, λβ , τ, γ) =
1
2

[
2γmΛαβ(γτ + 1) + 4γλαλβτ

2 − τΛ2
αβ

](
2γ2mΛαβ + Λ2

αβ

)
(γmτ + λατ2 +m) (γmτ + λβτ2 +m)

,

with

Λαβ = (λα + λβ) , Λαβ = (λα − λβ) . (15)

In (13), we set the standard deviation of the ambient noise in
the slow and fast components to σS and σF respectively. We
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Fig. 1. Star network configurations showing (a) a load surrounded by
generators and (b) a generator surrounded by loads. Circles represent loads
(fast buses), and squares represent generators (slow buses).

also set distinct homogeneous correlation times for the noise in
each component as τi = τS for i ∈ S and τi = τF for i ∈ F .
While the contribution to the variance from the additive noise
in the slow component is essentially given by the position of
the buses on the slowest eigenmodes, the effect of the noise
coming from the fast component involves combinations of
eigenmodes. The precise combination depends on the effective
reduced dynamics through Γαβ .

B. Specific Grid Topologies

To get an intuition of the underlying mathematics that
lead (or not) to a discrepancy between the dynamics in the
reduced and full systems, we consider two idealized cases. Of
course, such idealized systems are not really representative of
actual implementations, but they are analytically tractable and
provide insight into the Kron reduction’s behavior.

Let us consider the case of a star graph where a load node
is surrounded by NS generators, as shown in Fig. 1 (a). In
this case, one readily verifies that, provided phase differences
are small,

JSS ≈ −IdNS , JFF ≈ −NS , JSF = J⊤
FS ≈ 1NS , (16)

which yields Γαβ ≈ 0 independently of α and β , where
we assumed homogeneous standard deviation for the noise
in the fast component. In such a case, the error induced by
the reduction is rather small.

On the contrary, when a single generator node is connected
to NF loads, as shown in Fig. 1 (b), one gets

JSS ≈ −NF , JFF ≈ −IdNF , JFS = J⊤
SF ≈ 1NF . (17)

Here, the coefficient Γαβ = σ2NF (if α = β = 1, otherwise
Γαβ ≈ 0) scales linearly with the number of loads. The error
in such a reduced system is typically large.

While the two cases depicted above are quite extreme and
somewhat unrealistic, they provide interesting insights into
situations where reducing a system may lead to more or less
accurate estimates of the frequency variance. To put it shortly,
a reduced node connected to many non-reduced ones will
not lead to a large error, while the opposite is expected to
induce a large error in the estimate. Power grids structures
are typically closer to the latter situation also including con-
nections between the reduced buses. One therefore expects a
non-negligible impact of the reduced buses on the synchronous
generator dynamics. We numerically confirm this conjecture
in the next section.

V. NUMERICAL ILLUSTRATION

Here we compare the frequency deviations obtained with the
full noise term ξ in (11) and its naive approximation using un-
correlated noise, i.e., taking into account only ηS . To illustrate
our findings, we use the standard IEEE 118 Testcase [17]. An
OPF was used to obtain the initial steady-state configuration,
i.e., phase differences and generators’ outputs. The original test
case was augmented with dynamical parameters deduced from
generators’ and loads’ characteristics, similarly to [18]. For the
sake of comparing numerical results with the theory, dynami-
cal parameters were uniformized, leading to d = 0.0005 [s] ≪
d = 0.05 [s], and m = 0.002 [s2] ≪ m = 0.2 [s2].

Figure 2 compares the stochastic differential equation pro-
posed in this work with the current standard in the literature,
which neglects the contributions from the noise on the reduced
buses. Slow buses were ordered from the smallest variance
according to the naive approach. Fig. 2 (a) shows the system’s
map and the amount of noise present at each bus. Notice that
the system response to the external inputs is scattered through
it and that the variance is not directly related to the local noise
and thus cannot be deduced solely from it. Fig. 2 (b) shows
the theoretical and empirical variance with (red) and without
(blue) the correction term of (13). Comparing the red and blue
curve, we see that both measures generally follow the same
trend, which depends on the structure of the system. However,
for buses that are in the bulk of slow buses, the naive approach
can yield results that are not only quantitatively different but
even qualitatively incorrect, leading to a wrong assessment
of the system’s vulnerabilities. As a striking example, bus #2
jumps from the penultimate position to the forefront.

Following the discussion of Sec. IV-B about specific grid
topologies, we observe that the two buses with the largest
discrepancies, i.e., #2 and #8, are in a starlike load configura-
tion. Bus #2 is isolated from the other slow buses and is thus
affected by the noise of a large number of fast buses. On the
other hand, bus #14 is also in a starlike configuration, but in
its case, most of its neighbors are other slow buses and are
therefore less impacted. We illustrate the striking discrepancies
between naive and corrected trajectories in Fig. 3.

Up to this point, we have assumed that inertia and damping
were homogeneous. This assumption allowed us to describe
the system dynamics in terms of the eigenvalues and eigen-
vectors of the Laplacian matrix and to derive a closed-form
solution thereof, as well as for a resilience measure. If this
assumption is not met, these eigenmodes are not independent
and no direct interpretation can be made. However, the Mori-
Zwanzig reduction is still applicable and (11) still holds. In
Fig. 4, we compare both reduced models, with and without
correlated noise, to the structure-preserving model [13]. None
of the models is quite able to correctly assess the variances,
which is not surprising given that the system lies beyond the
assumptions made here. Nonetheless, the model developed
in this work seems to qualitatively better capture the system
vulnerabilities and is therefore probably more suitable for use.
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Fig. 2. (a) Map of the IEEE 118 Testcase [17] system: slow and fast buses are displayed in blue and orange respectively, and the dots’ sizes represent the
standard deviation of the input noise σi. (b) Variances

〈
ẋ2
i

〉
COI

of the frequency deviation from the center of inertia, obtained through numerical simulations
(solid) for correlated noises ξ (red) and naive noises ηS (blue). They are compared with analytical expressions (dashed) of: the full expression (red) in (13) and
only the contribution of slow nodes (blue). Ornstein-Uhlenbeck noises were used with typical correlation times τi = 0.1 and standard deviations σi ∈ [0, 0.01].

Fig. 3. Temporal evolution of frequencies ẋi(t) for a selection of 6 generator buses. Noises are simulated as the naive white noise ηS (blue) and the corrected
correlated noise ξ. These time series were generated with the same σi as in Fig. 2. The approach presented in this work indeed produces frequency patterns
quite different from the naive approach.

VI. CONCLUSION

We have shown that the Kron reduction, commonly used
in power grid modeling, can lead to misleading estimates of
the voltage dynamics. Typically, when the system is subject
to noise, the variance of the voltage frequency can be sig-
nificantly underestimated if the impact of reduced buses is
neglected. Such underestimation can be of major importance
when assessing the robustness of the grid against disturbances
and could lead to safety issues. Accordingly, we recommend
taking the reduced buses into account in simulations.

To address these limitations of the Kron reduction, we
propose a method to incorporate the impact of the fast buses
on the slow buses. Specifically, we use the Mori-Zwanzig
formalism to derive the equation of motion for the slow
buses as a function of a timescale parameter ϵ . This approach
elucidates how both the dynamics and the inputs at the slow
buses affect the evolution of the slow ones. Expanding at the
leading order in ϵ , we recover for the reduced dynamics the

usual Kron reduced Jacobian matrix. However, even if the
initial inputs are uncorrelated, the effective noise acting on
the non-reduced buses is correlated. In general, the correlation
of the noise cannot by neglected. We show for the IEEE
118 Testcase that neglecting the correlation and considering
only the noise coming from the non-reduced buses leads to
a misleading assessment of the vulnerabilities. Therefore, to
accurately evaluate the grid response, one should not solely
use uncorrelated noise at the non-reduced buses but also take
into account the contribution of external inputs at the reduced
nodes. Importantly, our framework gives a way to go beyond
the leading order in ϵ and calculate higher order correction.

Future work should consider a more accurate reduction
for the full structure preserving model. The latter could be
achieved by considering corrections beyond the leading order
in ϵ .
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Fig. 4. (a) Inertia coefficients mi. (b) Damping coefficients di. (c) Noise
standard deviations σi. (d) Variances ⟨ẋ2

i ⟩COI computed with the reduced
model consisting of inertial buses with the correlated noise ξ (red) and the
naive approximation ηS (blue), compared with those obtained with the full
structure-preserving model (green).

APPENDIX

The numerical simulations were performed with Differ-
entialEquations.jl [19], a Julia package that gathers well-
optimized solvers often benchmarked as some of the fastest
available implementations. Specifically, we used ImplicitEM,
an order 0.5 Ito drift-implicit method with the Trapezoid
method on the drift term. It is particularly suitable for stiff
stochastic differential equations, which power system dynam-
ics with realistic parameters tend to behave like. To ensure
good agreement between analytical and numerical results, an
upper bound had to be set on the time steps. Relaxing this
constraint renders the scheme significantly faster, but at the
expense of accuracy.
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