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ABSTRACT

This paper presents a unified framework for analyzing the input–output behavior of discrete-time complex networks viewed as open systems.
Importantly, we focus on systems that are inherently modeled in discrete time—such as opinion dynamics, Markov chains, diffusion on net-
works, and population models—reflecting their natural formulation in many real-world contexts. By an open network, we mean one that is
coupled to its environment, through both external signals that are received by designated input nodes and response signals that are released
back into the environment via a separate set of output nodes. We develop a general framework for characterizing whether such networks
amplify (pass) or suppress (block) the external inputs. Our approach combines the transfer function of the network with the discrete-time
controllability Gramian, and uses the H2-norm as a comprehensive measure of signal gain across various classes of inputs. We introduce a
computationally efficient network index based on the Gramian trace and eigenvalues, enabling scalable comparisons across network topolo-
gies. Application of our method to a broad set of empirical networks—spanning biological, technological, and ecological domains—uncovers
consistent structural signatures associated with passing or blocking behavior. These findings shed light on how the network architecture and
the particular selection of input and output nodes shape information flow in real-world systems, with broad implications for control, signal
processing, and network design.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0290951

Complex dynamical networks live within an extended environ-

ment, with which they are coupled through both input nodes that

receive stimulation signals and output nodes that release response

signals. A fundamental question, which we address here with a

focus on discrete-time networks, is whether the network topology

and the particular choice of input and output nodes determine an

amplification or suppression in this input-to-output transforma-

tion. In this work, we focus on a single quantity: the HHH2-norm of

an open network, which captures this input–output relationship.

We derive a simple approximation formula for theHHH2-norm and

introduce a normalized structural index that quantifies how the

choice of input nodes influences the amplification or attenuation

of signals. These concepts are evaluated on empirical networks

from various domains.

I. INTRODUCTION

Understanding complex networks in discrete time is essential
for accurately modeling systems where interactions and updates
occur at distinct intervals rather than continuously. Many real-
world networks—including digital communication systems, social
networks, and biological processes, such as gene regulation or neural
spike trains—operate through inherently discrete events or sampling
procedures. Discrete-time models are not only more appropri-
ate for systems governed by algorithmic or clock-driven mecha-
nisms, but they also align naturally with data acquisition, which
typically occurs in a time series form. Moreover, the mathemat-
ical and computational frameworks for discrete systems enable
tractable analysis, efficient simulation, and compatibility with digital
hardware, making them indispensable for both theoretical studies
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and practical applications in control, prediction, and inference on
networks.

This work centers on the study of open networks—that is, net-
works that interact dynamically with their environment by receiving
inputs at certain nodes and transmitting outputs through others.
Such interaction is characteristic of many real systems: neural cir-
cuits processing sensory inputs,1,2 electrical power grids that both
receive energy from generators and deliver it to consumers,1,2 or eco-
logical networks influenced by environmental fluctuations.3 While
extensive research has addressed control of networked systems (see,
e.g., Refs. 4–9), our focus is distinct: we investigate how networks
respond to a wide range of environmental signals, beyond those
strictly used for control purposes. For recent reviews of dynamical
processes and signal propagation in complex networks, see Refs. 10
and 11.

Prior studies have examined network responses to external
drivers12–15 in continuous time, but these analyses often rely on
simplifying assumptions—such as symmetric connectivity or, at
most, asymmetric networks with normal adjacency matrices. How-
ever, many real networks are non-normal, highly directional, and
exhibit layered or hierarchical organization—features that signifi-
cantly impact their dynamic behavior and are mathematically much
harder to treat.16–24 Inspired by these findings, information-theoretic
results have been developed to study how flow and information
propagate in directed networks.25,26 In this paper, different from
this previous work, we present a general framework for analyzing
the response of directed networks to various input signals—ranging
from sinusoidal and periodic to stochastic and broadband. The
study here presented parallels another work from some of the same
authors, which focuses on continuous-time open networks.27

We define an open network through three components: (i) its
internal structure, given by the node set N and a set E of directed,
possibly weighted, edges; (ii) a subset of input nodes I ⊆ N where
signals from the environment are introduced; and (iii) a subset
of output nodes O ⊆ N , where the resulting network response is
observed. Our analysis examines how both the connectivity pattern
and the placement of input/output nodes influence the attenua-
tion or amplification of incoming signals. We quantify this behavior
via the network’s transfer function, using the H2-norm as a com-
prehensive measure of signal gain across various classes of inputs.
Additionally, we establish a formal link between the network’s struc-
tural features, its transfer function, and the controllability Gramian,
which plays a pivotal role in our theoretical development. This
framework enables us to determine whether a given network tends
to transmit or suppress external stimuli, depending on the choice of
input and output nodes.

Using this approach, we conduct a comparative analysis of
empirical networks drawn from diverse domains, aiming to iden-
tify general structural features that govern how networks reshape
and process external signals. We see that networks from different
domains are typically characterized by distinct passing vs blocking
behavior.

II. ANALYSIS OF NETWORKS AS OPEN SYSTEMS

Network dynamics models in discrete time emerge in diverse
contexts: they describe opinion updating in social systems through

neighbor averaging, the evolution of probability distributions in
Markov chains driven by a transition matrix, the diffusion of heat or
mass across interconnected structures, and the progression of pop-
ulations across age classes governed by the Leslie matrix.28–32 In each
of these examples, the evolution of the system is determined by the
current state and the structure of the network interactions encoded
in the matrix A. The dynamics of all these complex interconnected
systems arise from the interplay between the internal node dynam-
ics, the network interactions, and the external signals. Near a stable
equilibrium, these systems can often be approximated by a lin-
ear time-invariant model in discrete time (map), expressed as xk+1

= Axk, where xk represents the state of all nodes at time k and A
encodes the interaction weights.

Building on this insight, we now frame the dynamics as stan-
dard linear time-invariant (LTI) discrete-time systems, described by
the equations

xxxk+1 = Axxxk + Buuuk, (1a)

yyyk = Cxxxk, (1b)

where xxxk ∈ R
N is the network state vector, and uuuk ∈ R

M is the vector
of external input signals acting on the network, reflecting its open
nature. The output vector yyyk ∈ R

P collects signals from selected
nodes. The matrix A ∈ R

N×N describes the network connectivity;
i.e., Aij is the strength of the coupling from node j to node i (Aij = 0
if node j does not directly affect node i). The matrix B ∈ R

N×M has
M non-repeated versors as columns, namely, if Bij = 1, then Bkj = 0,
∀k 6= i. The matrix C ∈ R

P×N has P non-repeated versors as its rows,
namely, if Cij = 1, then Cik = 0, ∀k 6= i. Our choice of the matrices
B and C describes which nodes are input and output nodes, respec-
tively. If Bij = 1, it means that node i is an input node, i ∈ I and
receives input signal j. Similarly, if Cij = 1, it means that node j is
an output node, j ∈ O, and transmits output signal i. We proceed
under the assumption that all of the eigenvalues λi of the matrix A
lie inside the unit circle. In order to satisfy this assumption, we set

A←
ρ

maxi |λi|
A, (2)

where 0 < ρ < 1 is the desired spectral radius for the matrix A.
TheH2 norm for the discrete-time linear time-invariant system

in (1) is

‖G‖22 :=

+∞
∑

k=0

‖Yk‖
2
F = Tr

(

CWdC
>
)

. (3)

Here, Yk = CAk−1B is the response to the input impulse at time
k, and ‖ · ‖F is the Frobenius norm. The symmetric positive defi-
nite matrix Wd is the discrete-time controllability Gramian and is
defined as

Wd =

∞
∑

j=0

AjBB>(A>)
j
. (4)

The matrix Wd satisfies the discrete-time Lyapunov equation,

AWdA
> −Wd + BB> = 0, (5)
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which is a linear system of equations in the entries of Wd and can be
solved easily. We denote the output controllability Gramian as

Wout
d = CWdC

>, (6)

where Wd is obtained by solving Eq. (5).
Remark 1: The average energy to move the system in state-

space in K steps is inversely related to the trace of the controllability
Gramian in K steps,

Tr(WK) = Tr





K−1
∑

j=0

AjBB>(A>)
j



 . (7)

An important property of the trace of the output controllabil-
ity Gramian Tr(CWdC

>) is modularity with respect to the columns
of the matrix B33 and also with respect to the rows of the matrix
C.27 This property implies that the trace of the output controllability
Gramian is equal to the sum of the individual contributions of each
one of the traces resulting from choosing each column of B and each
row of C, i.e.,

Tr
(

CWdC
>
)

=

M
∑

i=1

P
∑

k=1

CkW
(i)
d C>k , (8)

where W(i)
d =

∑∞
j=0 AjBiB

>
i (A>)

j
, and Bi and Ck are column i and

row k of the matrices B and C, respectively. In the case of inter-
est here, where Bi and Ck have the versor structure, this implies
that the overall trace is the sum of the contributions of each pair
of input–output nodes to the trace. That is,

Tr(Wd(A,I ,O)) =
∑

i∈I

∑

k∈O

Tr(Wd(A, i, k)), (9)

where Wd(A,I ,O) denotes the controllability Gramian defined by
the matrix A and the sets of input and output nodes I andO, respec-
tively. This is important as it allows us to study the general case of
networks with multiple inputs and multiple outputs, in terms of the
contributions of single-input single-output networks.

A. Output controllability Gramian approximation

In this section, we derive an approximation for the trace of the
output controllability Gramian, which corresponds to the squared
H2-norm of the network, explicitly capturing the underlying net-
work structure encoded by the triplet (A, B, C). We focus on the case
of a network with a single input and a single output, where B ∈ R

N×1

and C ∈ R
1×N, and we retain the assumption that both B and C have

a versor structure. Let d denote the distance—defined as the length
of the unweighted shortest path—from the input node to the output
node. The output controllability Gramian is

Wout
d := CWdC

> =

∞
∑

i=0

CAiBB>(A>)
i
C>.

Since we consider the case of a single input and a single output, the
terms in the summation are scalars, and the expression simplifies to

Wout
d =

∞
∑

i=0

(

CAiB
)2

.

We note that the zero-order term (CB)2 vanishes unless the input
and output nodes coincide. In what follows, we assume that the
input and output nodes are distinct. Moreover, the terms corre-
sponding to powers lower than d steps vanish, as no path exists from
input to output in fewer than d steps. The summation can, thus, be
rewritten as follows:

Wout
d =

∞
∑

i=0

(

CAd+iB
)2
≈

∞
∑

i=0

(

CAdB
)2

ρ2i, (10)

where we replaced the powers A2i by ρ2i, where ρ (recall, we set
0 < ρ < 1 ) is the spectral radius of A. For a sufficiently large
input–output distance d, Ad+i asymptotically scales as ρd+i since the
largest eigenvalue dominates at large powers. The summation above,
being a convergent geometric series in ρ2i, then can be rewritten as
follows:

Ŵout
d ≈

(CAdB)
2

(1− ρ2)
. (11)

Note that the simple formula in Eq. (11) depends on two important
network structural quantities, the spectral radius ρ, and the input
node to the output node distance d. Since the H2-norm squared
is equal to the trace of the output controllability Gramian, and
also based on the modularity property, then Eq. (11) can be used
multiple times for each pair of the input–output nodes of a multi-
input–multi-output network to provide the following expression:

Tr
(

Ŵout
d (A,I ,O)

)

=
∑

i∈I

∑

k∈O

Ŵout
d (A, i, k), (12)

where Ŵout
d (A, i, k) is the approximation of the output controllability

Gramian using Eq. (11) when node i is the input and node k is the
output. We recall that the sets I and O denote the sets of input and
output nodes, respectively.

Example 1: Here, we randomly generate a graph, shown
in Fig. 1. For this example, ρ(A) = 0.5. Also, the set of input
nodes is I = {4, 5}, and the set of output nodes is O = {2, 3}.
Table I provides information on the contribution of each pair

FIG. 1. Randomly generated graph for Example 1, where the adjacency matrix
A, the input matrix B, and the output matrix C are provided on the right side of the
figure. Input nodes are represented in blue color and output nodes in red color.
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TABLE I. Additional information for Example 1: i→ j denotes the path from input

node i to the output node j, d is the unweighted distance along this path, Ŵ out
d (A, i, k)

and W out
d (A, i, k) are the approximated and true contribution of this path toward the

trace of the controllability Gramian in (12) and (6), respectively, and E(A, i, k) is the

normalized error in (13).

i→ k d Ŵout
d (A, i, k) Wout

d (A, i, k) E(A, i, k)

4→ 2 4 8.8671× 10−06 8.7262× 10−06 0.0159
4→ 3 3 0.0011 0.0011 0.0060
5→ 2 2 0.0050 0.0049 0.0200
5→ 3 1 0.6206 0.6107 0.0160

of input and output nodes, where we see that for shorter path

lengths d, the contribution Ŵout
d (A, i, k) is larger. The trace of the

exact output controllability Gramian by solving Eq. (5) is Tr(Wout
d )

= Tr(CWdC
>) = 0.6168, where its approximation using Eq. (12) is

Tr(Ŵout
d (A,I ,O)) = 0.6267.

We calculate the normalized error

E =

∣

∣

∣
Tr
(

Ŵout
d

)

− Tr
(

Wout
d

)

∣

∣

∣

Tr
(

Wout
d

) , (13)

where Ŵout
d is given in Eq. (11) and Wout

d is given in Eq. (6). Here, we
obtain E = 0.0161.

B. Numerical analysis of network topologies

To assess the accuracy of the proposed approximation, we con-
duct a numerical analysis on synthetic directed networks, comparing
the true and approximated output controllability Gramians, follow-
ing the same approach outlined above. We consider two classes of
networks: directed Erdős–Rényi (ER) graphs and directed scale-free
(SF) graphs. Next, we describe how we construct the matrix A in
the two cases of ER networks and SF networks. In the ER case, A is
taken to be the adjacency matrix of directed and weighted random
graphs of N nodes, where each possible directed edge from node i
to node j is included independently with probability p. Each existing
directed edge is assigned a weight drawn uniformly at random from
the interval [0, 1]. The resulting adjacency matrix is then rescaled so
that the spectral radius equals ρ = 0.5, following Eq. (2).

For the SF networks, we take A to be the adjacency matrix
of a directed, unweighted scale-free graph with prescribed in- and
out-degree distributions, generated using the static model pro-
posed by Goh et al.34 The power-law exponents of the in-degree
and out-degree distributions are given by γin =

1+βin
βin

and γout

= 1+βout
βout

, where βin, βout ∈ (0, 1] are control parameters. Each node

i is assigned weights pi = i−βout and qi = i−βin that determine the
probabilities of selecting i as the source and target of an edge, respec-
tively. At each step, two distinct nodes i and j are sampled with
normalized probabilities pi/

∑

k pk and qj/
∑

k qk, and a directed
edge from i to j is added if it does not already exist. This process is
repeated until κN edges have been created, where κ is the desired
average degree of the directed graph. In our experiments, we set
β = βin = βout and vary β from 0.5 to 1 while fixing κ = 0.02N,
producing directed and unweighted SF networks with N nodes and

degree distribution exponent γ = γin = γout. The choice β = 0.5
(β = 1) corresponds to a more homogeneous (more heterogeneous)
scale-free network with γ = 3 (γ = 2). Finally, similarly to what
done for ER networks, the obtained adjacency matrix is rescaled
using Eq. (2) in order to set the spectral radius to ρ = 0.5.

To systematically evaluate the accuracy of the approximation
(11) in both Erdős–Rényi (ER) and scale-free (SF) networks, we pro-
ceed as follows. We select a single input node and a single output
node, such that the path from the input node to the output node has
(unweighted) length d among all possible pairs of nodes. For each
choice of (d, p) in ER networks and each choice of (d, β) in SF net-
works, we randomly select 100 pairs of {input, output} nodes. For
each pair of input–output nodes, we then create the matrices B and
C with versor structures, accordingly. We vary the size of the net-
work N and the connection probability p (for ER networks) or the
control parameter β (for SF networks) and calculate the normalized
error E.

Figures 2(a)–2(c) show that the output controllability Gramian
Wout

d decays for larger ER networks (larger N) and for more dense
networks (larger p), and for longer distances between the input and
the output nodes (larger d). Figures 2(d)–2(f) show that the approx-
imation of the output controllability Gramian (11) is more accurate
for larger ER networks (larger N) and for more dense networks
(larger p), and for longer distances between the input and the output
nodes (larger d). We see the accuracy of the proposed approxima-
tion across different network types and parameters. We note that the
approximation matches well the true output controllability Gramian
in all cases, with negligible discrepancy.

Figures 3(a)–3(c) show that the output controllability Gramian
decays for larger SF networks (larger N) and for more homogeneous
networks (larger β), and for longer distances between the input and
output nodes (larger d). Figures 3(d)–3(f) show that the approxima-
tion (11) of the output controllability Gramian is more accurate for
larger SF networks (larger N) and for more homogeneous networks
(larger β), and for longer distances between the input and output
nodes (larger d). In Fig. 3(e), the increase in the error is due to the
finite machine precision. The approximation matches well the true
output controllability Gramian in all cases, with small discrepancy.

III. STRUCTURAL ANALYSIS AND EMPIRICAL

VALIDATION

A. The network index α

Here, we aim to provide a normalized structural network index
that quantifies whether the selection of M input nodes for a network
results in the lowest/highest possible trace of the output controlla-
bility Gramian (H2-norm). Hereafter, without loss of generality, we
assume nodes 1, 2, . . . , M are the input nodes. Note that if this is not
the case, the nodes and the input signals may be renamed to satisfy
this assumption. As a result, we have the matrix

B =

[

IM

0N−M,M

]

.

We denote the set of output nodes as O = {o1, o2, . . . , oP}. The
P× N matrix C has all zero entries except for Cj,oj

= 1, j = 1, . . . , P.
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FIG. 2. Panels (a)–(c) show a comparison between the true [Eq. (6)] and approximated [Eq. (11)] output controllability Gramian. The blue color (red color) is for the case that
the distance from the input to the output node is d = 1 (d = 2). Circles are true values, and stars are approximated values. We see that the output controllability Gramian
W out

d decays for larger ER networks (larger N), for more dense networks (larger p), and for longer distances between the input and output nodes (larger d). The figure only
shows the two cases that the distance from the input node to the output node is either d = 1 or d = 2, with the latter yielding much better performance of the approximation
than the former (see also the lower panels). Larger values of d, for which the approximation works even better, are not shown. Panels (d)–(f) show the normalized error E
[Eq. (13)] as the connection probability p of the Erdős–Rényi graph is varied for different numbers of nodes N. We see that the error E decays with the distance d. The data
are averaged over 100 realizations for each choice of (d, p) in all panels.

The K-step discrete-time output controllability Gramian is

CWKC> = C

K−1
∑

k=0

AkBB>
(

A>
)k

C>.

The trace of the output Gramian CWKC> can be calculated as

Tr(CWKC>) = Tr

(

C

K−1
∑

k=0

AkBB>
(

A>
)k

C>

)

= Tr(CBB>C>)+

K−1
∑

k=1

Tr
(

CAkBB>
(

A>
)k

C>
)

.

It follows that term k in the summation is

AkB =











[Ak]11 . . . [Ak]1m

[Ak]21 . . . [Ak]2m

...
. . .

...
[Ak]N1 . . . [Ak]Nm











,

B>
(

A>
)k
=







[Ak]11 [Ak]21 . . . [Ak]N1

...
...

. . .
...

[Ak]1m [Ak]2m . . . [Ak]Nm






.

If the matrix A is an unweighted adjacency matrix with binary
entries, then [Ak]ij is the number of paths from node i to j in k steps.
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FIG. 3. Panels (a)–(c) show a comparison between the true [Eq. (6)] and approximated [Eq. (11)] output controllability Gramians for different values of the path length d from
the input to output node, as the control parameter β of the scale-free network is varied for different numbers of the network nodes N. The degree distribution of the scale-free
networks is more homogeneous for larger values of β . For example, the choice β = 0.5 (β = 1) corresponds to a more homogeneous (more heterogeneous) scale-free
network with γ = 3 (γ = 2). Circles are true values, and stars are approximated values. Panels (d)–(f) show the normalized error E [Eq. (13)] as the control parameter
β of the scale-free network is varied for different numbers of nodes N. In all panels, we see that the error decreases with the distance d. The data are averaged over 100
realizations for each choice of (d,β) in all panels.

If the matrix A is a weighted adjacency matrix, then [Ak]ij is the com-
mutative sum of the weights of all k step paths from node i to j. Thus,
the trace of term k in the summation is

Tr
(

AkBB>
(

A>
)k
)

=

M
∑

j=1

∑

o∈O

[

Ak ◦ Ak
]

oj
,

where ◦ denotes the Hadamard product (entrywise product).
Finally, the trace of the K-step discrete-time controllability
Gramian is

Tr(WK) = Tr
(

CBB>C>
)

+

K−1
∑

k=1

M
∑

j=1

∑

o∈O

[

Ak ◦ Ak
]

oj
. (14)

If the spectral radius of the matrix A is small, the trace will be
dominated by Tr(CBB>C>); i.e., Tr(WK) ≈ Tr(CBB>C>). For larger
spectral radii, the terms inside the summation will behave as pos-
itive perturbations to the base value Tr(CBB>C>). An example of
this is shown in Fig. 4, where Tr(Wd) is evaluated for selected real
networks. In this example, C = I, so Tr(CBB>C>) = Tr(BB>) = M.
We see that when the spectral radii of the adjacency matrices are
small [panel (a)], Tr(Wd) ≈ M, and when the spectral radii are large
[panel (b)], Tr(Wd) ≥ M.

Here, we separate the first term of the summation from the rest,

Tr(WK) = M+

M
∑

j=1

N
∑

i=1

A2
ij +

K−1
∑

k=2

M
∑

j=1

N
∑

i=1

[

Ak ◦ Ak
]

ij
. (15)
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FIG. 4. The trace of the infinite-horizon discrete-time controllability Gramian
Tr(Wd) for different real networks vs their number of input nodes M. In panels (a)
and (b), the adjacency matrices are scaled such that all networks have spectral
radii of 0.1 and 0.98, respectively. The dashed black line represents Tr(Wd) = M.
We see that when the spectral radii of the adjacencymatrices are small [panel (a)],
Tr(Wd) ≈ M, and when the spectral radii are large [panel (b)], Tr(Wd) ≥ M.

Next we focus on the leading sum
∑M

j=1

∑N
i=1 A2

ij, based on which

we define the network index α to provide a more computationally
efficient metric to compare the trace of the controllability Gramian
when different nodes of a network are selected as input nodes.

We define dj :=
∑N

i=1 A2
ij, of node j, j = 1, . . . , N, and, with-

out loss of generality, assume the nodes are ordered such that nodes
with lower index j have lower dj; i.e., d1 ≤ d2 ≤ · · · ≤ dN. Then we
introduce the network index

α =

∑M
i=1 di∗ − di

∑M
i=1 dN−M+i − di

, (16)

0 ≤ α ≤ 1, where M is the total number of input nodes, and i∗ is the
index of input node i with the lowest di∗ . If i∗ = i, i = 1, . . . , M, then
α = 0; which corresponds to the case in which the M input nodes are
selected to be the ones with the lowest di values. If i∗ = N−M+ i,
i = 1, . . . , M, then α = 1; which corresponds to the case in which
the M input nodes are selected to be the ones with the largest di

values.
For example, assume a network with N = 5 nodes and

d1 = 1, d2 = 2, d3 = 2, d4 = 3, d5 = 3. If nodes 2 and 4 are input
nodes, then M = 2, 1∗ = 2, and 2∗ = 4. The network index becomes

α =
(d2 − d1)+ (d4 − d2)

(d4 − d1)+ (d5 − d2)
=

(2− 1)+ (3− 2)

(3− 1)+ (3− 2)
=

2

3
.

Evaluation of α is much more computationally efficient than
evaluating the trace of the controllability Gramian, especially in
large-scale networks. In what follows, we calculate α for several
empirical networks and show that α and the trace of the controlla-
bility Gramian are linearly correlated as long as the spectral radius of
the adjacency matrix A is small (less than 0.2 based on our numerical
simulations).

B. Optimal selection of the input nodes

An important question that we address in this paper is how
to select k input nodes so that the trace of the controllability
Gramian is maximized/minimized. Through the modularity prop-
erty of the trace, the trace is recorded when each one of the nodes
is set as the only input node. Then, k nodes that provide the maxi-
mum/minimum trace are selected as the optimal set choice. If the
initial network is such that the spectral radius of the adjacency
matrix A is small, then instead of evaluating the trace for each input
node, it is sufficient to calculate dj for each node and select k nodes
that result in maximum/minimum values of dj.

C. Optimization applied to real networks

We analyze empirical networks across various domains. For
all cases, A is taken as the adjacency matrix of an empirical net-
work reconstructed from publicly available datasets. The obtained
adjacency matrices are then rescaled using Eq. (2) in order to
set the spectral radius to ρ = 0.2. In each case, we identify input
nodes as those through which energy, matter, or information flows
into the network from the environment. For example, in food
webs plants and phytoplankton serve as entry points by transform-
ing sunlight into biomass;16,35,36 in electrical power grids, genera-
tors supply energy to the system;37–39 in brain networks (connec-
tomes), sensory or afferent regions act as receivers of environmen-
tal stimuli;40–45 in gene regulatory systems, upstream transcription
factors are activated by external signals and control downstream
gene expression;16,46–49 and in signaling pathways, membrane-bound
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receptors or intracellular sensors perceive signals from the environ-
ment and initiate downstream responses.50 Detailed information on
each dataset we consider is provided in Table II of the Appendix.
For the sake of simplicity and due to the absence of more detailed
information, in what follows we set C = I.

It is reasonable to assume that many biological networks have
evolved to strike an optimal balance between transmitting and sup-
pressing external inputs. For instance, some systems may need to
enhance specific signals while filtering out unwanted noise. In the
context of technological applications, an important challenge lies in
adapting or redesigning existing networks to improve their ability to
transmit desired signals while blocking irrelevant or harmful ones.
Next, we study the level of blocking vs passing behavior of several
empirical networks. For each dataset, we fix the number of input
nodes M to its empirical value. We first randomly choose 10 000 sets
of M nodes (with a uniform probability of selection) and evaluate
Tr(Wd), the trace of the infinite-horizon discrete-time controllabil-
ity Gramian. We compare Tr(Wd) with the network index α based
on the input nodes provided in the dataset. We also perform an opti-
mization to minimize Tr(Wd) by choosing M optimal input nodes.
Specifically, given the topology (the N-dimensional matrix A) and
the number of input nodes M, we solve the following mixed-integer
linear program via Gurobi51 and YALMIP52 in MATLAB:53

min
b1 ,b2 ,...,bN

Tr(Wd) (17a)

subject to Wd − AWdA
> − diag(b1, . . . , bN) = 0, (17b)

N
∑

i=1

bi = M, (17c)

bi ∈ {0, 1}, i = 1, . . . , N. (17d)

We then compare the values of Tr(Wd) for these three cases
(with the same number M): real data choice, random choice, and
optimal choice. We call a network passing (blocking) when the
empirical values of Tr(Wd) and α are higher (lower) than most ran-
dom choices. In Fig. 5, we present the results of this analysis in the
Tr(Wd)–α plane for a variety of empirical networks (see Table II
for additional information on the datasets.) Across all panels, we
observe an approximately linear relationship between the network
index α and the trace of the output controllability Gramian, Tr(Wd),
which is equal to the square of the H2-norm. This relationship
indicates that α serves as a robust proxy for comparing the signal
amplification capacity of different networks, without requiring the
explicit computation of the H2-norm or the Gramian itself.

Overall, our analysis reveals a diverse range of behaviors across
the empirical networks examined. In particular, the IEEE 118 net-
work, the UK power grid network, the cat brain network, and the C.
elegans connectome consistently exhibit blocking behavior, in which
input signals are attenuated rather than propagated. In contrast,
the mouse brain network and the Stem Cells 44 network demon-
strate passing behavior, with inputs being sustained or amplified.
The remaining networks display intermediate or mixed responses,
indicating that signal propagation capacity is not a uniform prop-
erty but rather depends sensitively on the underlying organization
and interaction structure of each network. Taken together, these
findings suggest that technological networks often tend to exhibit

more blocking behavior, while many biological networks are more
often passing, although with notable exceptions. In particular, the
contrasting behavior observed among neural networks from differ-
ent species highlights that even within the same functional domain,
signal propagation capacity can vary substantially, reflecting deeper
differences in network architecture and functional organization.

D. Largest eigenvalue of the Gramian

From Eq. (1a) we can write

xxxk =

k−1
∑

i=0

Ak−1−iBuuui, k→∞. (18)

We now focus on the effect of the q < k most recent inputs
uuuk−1,uuuk−2, . . . ,uuuk−q on the state xxxk. For this, we rewrite Eq. (18) as

xxxk =

k−1−q
∑

i=0

Ak−1−iBuuui + Buuuk−1

+ ABuuuk−2 + · · · + Aq−1Buuuk−q, k→∞, (19)

where we have isolated the last q terms Aj−1Buuuk−j, j = 1, . . . , q, on
the right-hand side of Eq. (19) to study the effect of the series
of inputs uuuk−1,uuuk−2, . . . ,uuuk−q on the state xxxk. Assuming q is large
enough, then these terms have a greater effect on the norm of xxxk

than the rest of the terms inside the summation. Then we can rewrite
Eq. (19) using a matrix-vector notation as

xxxk =

k−1−q
∑

i=0

Ak−1−iBuuui + CqUUU
(q)

k−1 k→∞,

where Cq = [B AB . . . Aq−1B] and UUU
(q)

k−1 =
[

uuu>k−1 uuu>k−2 . . . uuu>k−q

]>

∈ R
pm. If q = n, then Cq is equal to the Kalman controllability

matrix. Thus we define the gain

G = sup

UUU
(q)
k−1

‖CqUUU
(q)

k−1‖

‖UUU
(q)

k−1‖
= σmax(Cq) =

√

λmax(Wq), (20)

where the finite-horizon Gramian

Wq =

q−1
∑

j=0

AjBB>(A>)
j
. (21)

We can also define a gain with respect to the output vector
yyyk = Cxxxk ∈ R

q,

Gout = sup

UUU
(q)
k−1

‖CCqUUU
(q)

k−1‖

‖UUU
(q)

k−1‖

= σmax(CCq)

=

√

λmax

(

CWqC>
)

=:

√

λmax

(

Wout
q

)

, (22)

Chaos 35, 123113 (2025); doi: 10.1063/5.0290951 35, 123113-8

Published under an exclusive license by AIP Publishing

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 5. The trace of the infinite-horizon discrete-time controllability Gramian Tr(Wd) vs the network index α for selected real network dataset (IEEE118, UK Grid, Cat,
C-Elegans, Mouse Liver, Mouse Brain, Stem Cells 44, and Macaque 47). For all datasets, the spectral radius of the adjacency matrix is scaled to be ρ = 0.2. Each dataset
has its own unique number of input nodesM. We randomly choose 100 sets ofM input nodes and evaluate Tr(Wd) and α for each set (blue circles). The pair value of Tr(Wd)

and α from the input nodes within each real dataset is plotted as a red diamond. In each panel, a green star is used to label the optimal selection of M nodes, as described
in the text. Due to the large size of the datasets C-Elegans and Mouse Brain, we were not able to perform the optimization. In all panels, we see an approximately linear
relationship between the network index α and the trace of the (output) controllability Gramian, which is equal to theH2-norm squared.

where the matrix Wout
q ∈ R

q×q is the output controllability Gramian

and is given by

Wout
q =

q−1
∑

j=0

CAjBB>(A>)
j
C>. (23)

The larger the gain G (Gout), the larger the amplification of the

state xxxk (the output yyyk) from a series of critical inputs UUU
(q)

k−1

∗
, where

UUU
(q)

k−1

∗
is the right singular vector of Cq corresponding to the largest

singular value of Cq. In the limit in which q→∞, Wq becomes the
controllability Gramian.
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FIG. 6. The largest eigenvalue of the infinite-horizon discrete-time controllability Gramian λmax(Wd) vs the network index α for selected real network datasets (IEEE118,
Macaque 47, Cat, Stem Cells 44, Macaque 32, RTS96, Human T cell, and Macaque 30). For all datasets, the spectral radius of the adjacency matrix is scaled to be ρ = 0.2.
Each dataset has its own unique number of input nodes M. We randomly choose 100 sets of M input nodes and evaluate λmax(Wd) and α for each set (blue circles). The
pair value of λmax(Wd) and α from the input nodes within each real dataset is plotted as a red diamond. In each panel, a green star is used to label the optimal selection of
M nodes, as described in the text.

We repeat the process described in Sec. III C and evalu-
ate the largest eigenvalue of the infinite-horizon discrete-time
controllability Gramian λmax(Wd) for the following three selections
of input nodes: (1) empirical data choice, (2) random choice, and

(3) optimal choice corresponding to the case in which λmax(Wd)

is minimized. In all three cases, M is kept fixed and equal to its
empirical value. Specifically, given the topology (the N-dimensional
matrix A) and the number of input nodes M, we solve the following
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mixed-integer semi-definite program via Gurobi51 and YALMIP52 in
MATLAB,53

min
b1 ,b2 ,...,bN ,t

t (24a)

subject to tI−Wd � 0, (24b)

Wd − AWdA
> − diag(b1, b2, . . . , bN) = 0, (24c)

N
∑

i=1

bi = M, (24d)

bi ∈ {0, 1}, i = 1, . . . , N. (24e)

Figure 6 illustrates our results by plotting the largest eigen-
value of the infinite-horizon discrete-time controllability Gramian
λmax(Wd) vs the network index α for selected real datasets. We often
observe a positive correlation between λmax(Wd) and α. Notably, in
none of the networks, does the empirical parameter choice lie close
to the optimal one. Only in the case of the Stem Cells 44 network,
does the empirical configuration clearly exhibit passing behavior
(which is in accordance with what is seen in Fig. 5).

IV. CONCLUSIONS

In this work, we introduced a comprehensive framework for
analyzing the input–output response of discrete-time complex net-
works treated as open systems. Our approach leverages the network
transfer function and the discrete-time controllability Gramian,
with the H2-norm serving as a unified measure of signal amplifica-
tion. Different from previous work, we do not restrict the analysis
to symmetric or normal connectivity structures, which allows us
to investigate the effects of the intrinsic asymmetries and non-
normality present in real-world networks.

We provide a simple formula [Eq. (11)] to approximate the
trace of the output controllability Gramian, which critically depends
on two important network structural quantities, the spectral radius
ρ, and the input node to output node distance d. In particular,
these two parameters appear explicitly in our formula [Eq. (11)],
which has been found to well approximate the output controllabil-
ity Gramian Wout numerically. At the same time, our Eq. (11) also
depends explicitly on the adjacency matrix A and therefore incorpo-
rates structural features such as the presence and placement of hubs.
As a result, our analysis reflects all properties that can be inferred
from the adjacency matrix.

Another important outcome of this paper is the network index
α, which provides a computationally efficient proxy for estimating
how the choice of input nodes influences the amplification or atten-
uation of signals. We showed that the index α correlates well with
the trace and the largest eigenvalue of the Gramian in networks with
a small spectral radius. This allows for a scalable comparison across
large datasets.

We applied our framework to a wide array of empirical
networks—including biological, technological, and ecological sys-
tems—demonstrating that networks from different domains exhibit
different passing or blocking tendencies. Our optimization analyses

showed how modifying the choice of input nodes can significantly
alter a network’s dynamical response. In particular, we found that
real networks often deviate from random configurations and reflect
structure–function relationships that may arise from evolutionary
or design constraints. Our work complements Refs. 25 and 26, which
showed that increasing directionality/non-normality corresponds to
a lower entropy rate (less dispersion and stronger channeling) and
that broken detailed balance is captured by higher entropy produc-
tion (irreversible one-way transport), but also targets directional
input–output transfer, providing a concise framework to distinguish
transmission from blocking. These results offer a general method
for assessing and tuning signal flow in complex systems, with broad
implications for network control, biological signal processing, and
the design of robust engineered systems.

This work parallels another paper27 that focuses on continuous-
time open networks. The main results of this discrete time paper,
which are not found in Ref. 27 are, the network index α in Eq. (16)
and the approximation for the output controllability Gramian in
Eq. (11).
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APPENDIX: DESCRIPTION OF THE EMPIRICAL

NETWORKS

The summary of the information on real networks is provided
in Table II.
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TABLE II. Real networks information.

Category Networks Nodes Edges
Num. of
inputs Node info Edge info Weighting Reference

Gene networks Stem cells 44 44 547 4 Transcription
factors (TF) and
target genes (TG)

Molecular
interaction

Unweighted 46

Human Tcell 47 227 7 Unweighted 49
Mouse liver 210 1 910 3 Unweighted 48

net_p_aeruginosa 648 959 33 Unweighted 16
net_yeast 662 1063 86 Unweighted 16

Power grids IEEE 30 30 82 6 Generators (power
generation) or
loads (power
consumption)

Transmission
lines

Weighted 54

IEEE 39 39 92 10 Weighted 37
RTS96 73 216 33 Weighted 55

IEEE 118 118 358 39 Weighted 56
UK grid 120 330 17 Weighted 38 and 39

Food web BurgessShaleS10b_w 48 243 6 Resource species
(prey) and

consumer species
(predator)

Weighted 16

Connectome C-elegans 283 4 690 86 Neurons or brain
regions

Consumption
relation

Weighted 44

Cat 52 818 16 Weighted 42
Macaque 30 30 311 7 Neural

connections
Unweighted 40

Macaque 32 32 315 7 Unweighted 40
Macaque 47 47 505 10 Unweighted 43
Macaque 71 71 746 16 Unweighted 41
Mouse brain 213 21 654 34 Unweighted 45
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