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Forced oscillation source localization from generator measurements

Melvyn Tyloo,! Marc Vuffray? and Andrey Y. Lokhov?

Abstract—Malfunctioning equipment, erroneous operating
conditions or periodic load variations can cause periodic dis-
turbances that would persist over time, creating an undesirable
transfer of energy across the system — an effect referred to as
forced oscillations. Wide-area oscillations may damage assets,
trigger inadvertent tripping or control actions, and be the cause
of equipment failure. Unfortunately, for wide-area oscillations,
the location, frequency, and amplitude of these forced oscillations
may be hard to determine. Recently, a data-driven maximum-
likelihood-based method was proposed to perform source local-
ization in transmission grids under wide-area response scenarios.
However, this method relies on full PMU coverage and all
buses having inertia and damping. Here, we extend this method
to realistic scenarios which includes buses without inertia or
damping, such as passive loads and inverter-based generators.
Incorporating Kron reduction directly into the maximum likeli-
hood estimator, we are able to identify the location and frequency
of forcing applied at both traditional generators and loads.

I. INTRODUCTION

Forced oscillations refer to periodic input signals that origi-
nate from malfunctioning devices in the power grid. Potential
impacts of wide-area sustained oscillations include reduction
of the effective transmission line capacities and, on the long
run, damage to critical components in the grid [1], [2]. While
most forced oscillations remain local and do not spread across
the whole grid, threatening and difficult situations arise when
forced oscillations are the causes of long-range disturbances.
This happens when the input frequency is close to a natural
mode of the system and triggers inter-area oscillations, as it
was the case in the November 29, 2005 Western American
Oscillation event across the Western Interconnection [2]. In
such a scenario, the frequencies of wide areas of the grid
swing against each other, inducing problems with automatic
controllers and leading to possible line tripping. A well-
known wide-area forced oscillation event has been observed
on January 11, 2019 in the Eastern Interconnection of the
U.S. power grid, where significant frequency fluctuations were
measured across thousands of kilometers within the system.
The root cause was eventually found to be a malfunction-
ing steam turbine in Florida which has been disconnected
only after 18 min [3]. Other major events of this type are
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surveyed in Ref. [4]. Due to their global effect on the grid,
locating the source and identifying the frequency of wide-area
forced oscillations represent a hard inference problem. Indeed,
transmission power grids are typically made of thousands of
components subject to an ever increasing complexity within
the ongoing energy transition, and whose dynamic behavior
is not always precisely known. More and more inverter-
based resources — renewable energy sources connected to the
grid through power electronics — penetrate the grid, which,
together with the aging of existing components, make forced
oscillations events more likely. It is therefore an important
task to develop algorithms that are able to locate the source
and identify the frequency of forced oscillations, so that they
can be mitigated swiftly. Larger amount of real-time data is
collected nowadays, thanks to the increasing number of Phasor
Measurement Units (PMUs) on the grids, which opens the way
to new data-driven algorithms [5]-[10].

Various methods have been proposed to identify forced
oscillations: for instance, based on the complete knowledge
of the grid dynamics [11], [12], specific grid topologies [13],
knowledge of empirical wave propagation speed [14] or using
local physical properties [15], [16], precise generator mod-
els [17], [18], specific structure in the data [19] or leveraging
black-box machine learning methods [20]-[22].

Recently, Delabays et al. [23] proposed a promising location
and identification method that does not require any prior
knowledge about the grid dynamics or parameters, namely
line capacities, inertia and primary control coefficients of the
buses. This approach, that relies on a complete observation
of the network behavior, is fully data-driven and is based on
a maximum-likelihood estimator. However, while the deploy-
ment of PMUs has been constantly increasing over the past
years, the full coverage of the grid is far from being achieved.
Another restrictive assumption in [23] is that all buses have
non-vanishing inertia and damping coefficients, which does
not generically capture the behavior of loads or inverter-based
resources. In this work we propose to address the shortcoming
of [23]. More precisely, we improved the maximum-likelihood
approach of Delabays et al. and develop an algorithm that
accommodates for buses with lack of inertia and damping and
that accounts for partial PMU coverage of the transmission
network. We consider a more realistic setting for which major
system components such as generator buses are typically
observed, whereas measurements at other buses with no inertia
and damping such as loads and inverter-based resources are
generally not available. We also assume that we know the grid
topology and line susceptances but that we do not have access
to other system parameters such as inertia, damping of the
generators and/or load consumption and inverter generation.
In order to allow for a prompt localization and identification
of the source of forced oscillations, we assume that the
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Fig. 1: (a) Line network made of two generators (buses 1 and
5) and three load/inverter-based resource buses (2, 3, 4) with its
corresponding Laplacian matrix L. After the Kron reduction,
the system reduces to two generators with a new effective
coupling Laplacian matrix L™ . The matrix entries are given
by the transmission line susceptances. (b), (c) Time-series of
the angle (b) and frequency (in [rad/s]) (c) deviations at the
two generators with corresponding colors when a forcing with
frequency of 0.48Hz is applied at the load bus 2 [in green in
panel (a)]. They are obtained by simulating the reduced grid
model Eq. (8). Note that on the angle time-series, we have
subtracted their average value at each time step. The forcing
amplitude is v = 1 which is similar to the noise strength . The
colors correspond to those of panel (a). Generators have inertia
and damping parameters, d; = 0.3s, do = 1s, m; = 1.452%,
mo = 1.182 .

observation time frame is relatively short and on the order
of hundreds of seconds. On this time-scale, the fluctuations in
the grid dynamic can be considered to obey the swing dynamic
equations to a good approximation [6]. Our approach is based
on an explicit Kron reduction of the dynamics [24], [25]
that can be directly incorporated into the objective function
expressing the likelihood of observations at the generators.
We show that this formulation, combined with a preliminary
identification of the inertia and damping parameters, allows
us to successfully locate the source and identify the frequency
of the forcing both when it is applied at generators or at
unobserved load/inverter-based resource buses.
The contributions can be summarized as follows:

« We develop a likelihood approach for the detection and
localization of forced oscillations in realistic high-voltage

grids.

o We consider a grid model where not all buses are gen-
erators, but instead can be either generators or inverter
based resources/load buses.

« Not only we adapt and extend the method of Ref. [23] to a
more realistic grid model, but we also go beyond the full
observability assumption and instead suppose that only
PMU measurement time-series at the generator buses are
accessible.

The paper is organized as follows. We start by defining
the notations in Sec. II. Then, in Sec. III, we introduce the
dynamical model and its Kron reduction. Section IV presents
the localization and identification algorithm. We illustrate the
algorithm on a toy example in Sec. V and the IEEE-57 bus
test case in Sec. VI. A comparison with existing methods
is done in Sec. VII. In Sec. VIII, we apply the localization
algorithm to realistic PMU time-series. The conclusions are
given in Sec. VL

II. NOTATIONS

In the following, we denote column vectors v € RY as bold
lowercase letters and their transpose vectors as v | . Matrices
A € RVXN are referred to with bold uppercase letters. The
I-th canonical basis vector is denoted e;. The expectation
value of a random variable £ is denoted (£). We denote the
components of the identity matrix I using the Kronecker delta
(Si g -

III. SWING DYNAMICS AND FORCED OSCILLATIONS

We consider high-voltage power transmission networks that
are composed of generator (G) and load/inverter-based re-
source (L) buses. At each bus, one has a complex-valued
voltage variable whose phase and frequency at bus ¢ is denoted
©, and 9:‘, respectively. In the lossless line approximation,
the dynamics of the phase of the voltage at each bus is
described by the swing equations [26]:

mi©; + d;0; = P, _ZBij(@i_gj)+nigvi eg ()
J

P =) Bij(0;—©;) +nl.i€L, (2

J

o
I

where the inertia and damping coefficients are denoted m,; and
d;, and P; is the generated (P; > 0) or consumed (F; < 0)
power. The line susceptances b;; are included in the coupling
as B;; = |Vi||V;|b;; , where we assume the voltage amplitudes
[Vi|’s to be constant over time. Consumption fluctuations
around the nominal operation set-point are modelled by i.i.d.
Gaussian variables nf ' In the above model, the generator
response is described on these time scale by the (linear) swing
equations, while loads with no inertia and damping instanta-
neously adapt to the power fluctuations. Such dynamics could
also described grid-following inverter-based resources whose
control algorithms are much faster than the grid dynamics.
The forced oscillations coming from a faulty component at
node ! is modeled by an additive term ~y cos(27(ft+ ¢)) with
amplitude ~, frequency f, and phase ¢, acting at a single
generator or load bus. Since loads with no inertia and damping
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are described by a much faster dynamics, here modeled by
an instantaneous response in Eq. (2), we can work on a
restrained dynamical model which relate model parameters
to observations at the generators with the help of a Kron
reduction, derived as follows. We denote the Laplacian matrix
of the grid,

—Biii i
L= Bui7i 3)
ZkBik' 1=

which is divided into four block according to generators and
loads/inverter-based resources as,

{ng Lgl}

Lis LU “4)

The Kron reduction of the network yields the smaller Lapla-
cian matrix [24], [25],

L™ =L% — LY (L") ~'LY. 5)

When applying the reduction, one must also carefully modify
the source term in Egs. (1). The noise in the reduced network
becomes,

,r]gl _ ,’,’g _ Lgl(Lll)—l,’,]l ) (6)

Since the power fluctuations are i.i.d., i.e. (nf’l(t)n;]’l(t» =
di; , then the variance of the effective noise is,

' () = (8 + L L) 2L, )

Including the forcing term and using a matrix notation, the
equivalent dynamics observed at the generators takes the
following form,

6’ 0 I 69 0 0
ég = _MflLr _M—lD 99 + M_l’r]gl + Milu
(®)

where 69 = ©9 — ©f are the deviations of the phases from
the operational state ©f at the generator buses, M and D
are the diagonal matrices of inertia and damping parameters
whose diagonal elements are given by m; and d; , respectively.
Similarly to the noise, the reduced power vector reads, P9 =
~LIY(LY)~1P. The last term in Eq. (8) is the forcing which
has different form depending on its location. If the forcing
is applied to a generator bus, then u = v e; cos(27(ft + ¢))
with [ € G, while if it is at a load/inverter-based resource, then
u=—yLILI e cos(2m(ft + ¢)) with I € L, similar to
Eq. (6). Therefore, in the Kron reduced dynamics, the forcing
applied at [ € L potentially translates into multiple effective
forcing sources applied to the neighboring generator buses. Let
us illustrate this effect on a simple line grid with homogeneous
susceptance shown in Fig. 1(a), where two generator buses (in
blue and orange) are at the ends of the line grid, connected
by three loads (in green, red and purple). In this case where
the input is at bus 2, the effective forcing in the Kron reduced
system reads as,

u(t):Zﬁ : ;] er cos(2(ft + 0)). ©)

Quite intuitively, we observe that choosing the bus in the
center of the grid in Fig. 1(a) as a source translates into two
effective forcing inputs with same amplitude at the generators.
Placing the forcing at one the two other loads also results
in two effective forcing inputs at the generators, however,
with amplitudes that are different: the one at the closest
generator being larger than the other. Importantly, the same
effective forcing can be obtained if one allows multiple sources
of forcing at load/inverter-based resource buses. Indeed, for
example having a single source at bus 2 of v = 1 produces
the same effect seen at the generators as having two sources:
one at bus 3 with v+ = 2 and one at bus 4 with v = 1,
and the opposite phase leading to an opposite-sign input. The
multiplicity of the settings leading to the same observations at
the generator buses makes the identification of the disturbance
a very challenging problem. In the following, we assume that
there is a single source of forced oscillations, and identify its
parameters using measurements at the generator buses only.

The forced oscillation localization problem is formulated
as follows: given measurements of the voltage phases and
frequencies collected at the generators before and during the
event (see Fig. 1(b) as an example), reconstruct the location,
amplitude, and frequency of the forced oscillation which may
originate from any bus in the grid. As mentioned earlier,
we assume that the grid topology and line susceptances are
known. However, we do not assume that neither the damping
and inertia coefficients associated with the generators, nor the
frequency, phase, and location parameters associated with the
forcing are available. Hence, we aim at performing a sequential
identification of both the unknown system and the forcing
parameters. We do assume that the noise is homogeneous at
all buses.

IV. LOCALIZATION AND IDENTIFICATION METHOD

In the previous section, we showed that the load/inverter-
based resource buses can be eliminated, producing an effective
dynamics observed at the generators. Due to this elimination,
the effective forcing originating from the load buses can be
very similar and even identical, depending on the coupling
topology of the grid. To tackle the challenge of correctly
identifying the source of forced oscillations even at load buses,
we propose a two-step approach. First, we learn the dynamical
parameters, namely M, D, using a method of moments and
the knowledge of the grid topology while observing the grid
subject to ambient noise. Second, assuming that the grid is
subject to a forced oscillation event, we use the estimates for
M, D to define a log-likelihood cost function of the location,
frequency and phase of the source based on the observed time-
series at the generators, following the ideas proposed in [23].

A. Step 1: Estimation of the dynamical parameters

To obtain an estimate of M, D, knowing the ", we use a
maximum likelihood approach [7]. The latter essentially rely
on the fluctuations of the system around its operational state.
We consider a time-discretized version of the effective contin-
uous stochastic dynamics at the generators, assuming that we
have computed the reduced Laplacian matrix L". Denoting
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the measurements of the deviation from the operational state
at the generators at time ¢; and the dynamics matrix ,

07 0 I
Xt,- - |:GZ:| ,A - l:_M—lLr —-M-D| (10)

respectively, and using a FEuler-Maruyama approximation
scheme of Eq. (8), we can reformulate the dynamics when
there is no forcing as the first-order system with discretized
time steps ordered with : = 1,...., N — 1,
Ay, =AX, +[0 M p]" (11

where Ay, = (X;,,, —X;,)/7 with time-step 7 = T//N and T
the length of the time-series such that ¢; = 47 . Multiplying the
later equation by XtT on the right and taking the expectation
yields,

S; =AS, (12)

where we defined S; = E[A;, X/ ], So = E[X;, X/ ]. One
therefore has the estimate A =SS, L from which, thanks to
the knowledge of the grid topology, one can extract estimates

for the inertia and damping parameters M, D .

B. Step 2: Localization of the source

In order to write down the likelihood estimators of these
parameters, we consider the time-discretized version of the dy-
namics given in the previous subsection, where we add on the
right-hand side of Eq. (11) the forcing term [0 M~ u(k)] !
where we defined,

veRe (e2mikxt9)) 1 eg

u(k = -1 oy
—yLIL" "eRe (eQW(kWH’)) Jderl

13)

and the frequency of the forcing that relates to the integer
0 < k < N/2 with k = fT. Using this discretization, we
define log-likelihood function to identify the frequency and
localize the source of the forcing as,

L(v, 0,k ¢ | {X 3, L7, M, D)
N-1

1 _ (14)
= N Z V;l;zgll‘fti 5
=0
with
Vi, = M [Ati - AXti}Q —u(k), (15)
Tt =(I+ LT LY) (16)

where the index 2 in Eq. (15) refers to the second half
of the vector. More precisely, Eq. (14) is the normalized
log-likelihood for the unknown parameters (v,l, k, ¢) given

({th ;V:17LT,M,f)). The objective function in Eq. (14)
is essentially a least-squares estimator generalized to the case
of a non-diagonal noise covariance matrix 3 resulting from
the Kron reduction over the nodes L. It is important to note
the discrete set of forcing frequencies, which results from the
finiteness of the time-series measurements i.e. 7', and of the
time-step 7, is essential in order to perform the optimization

on Eq. (14). Indeed, keeping a continuous forcing frequency

makes the optimization a much harder nonlinear problem to
solve, as previously noted in [23] for a simpler version of the
estimator. Even when both the frequency % and the location [
of the forcing are fixed, the minimization over (v, ¢) is still a
complex optimization problem. However, expanding the term
inside the sum in Eq. (14), one notices that, using the discrete
Fourier transform of the time-series,

N 1 N—-1 .
X(k) = T S emibix,

(17)
=0

A(k) = — Ni CPINIA,, (18)
\/N =0

there is effectively only a single term that depends on the
phase ¢ independently of the other variables. Therefore, the
optimization over ¢ can be performed explicitly, resulting in an
easier problem. Overall an equivalent log-likelihood function
over the remaining parameters is written as (see App. A for
some details),

R 2
L(y.0k | {X: )5 L MD) = - ay —yaz, (19)

where we further defined,

ay =T/%'Ty, (20)
2 a = = r
o= [Tf <G22D0D> 4 oTy <G12DCL )
T (Hglf)C]f)) +2Tr (G1, L' CL") 1)
. 12
42Ty (EglLTCM> +Tr (HQQMCM)] 22)
C=3_T.I/3', E(k) = Re[AXT] (23)
G(k) = Re (XX') , H(k) = Re (AAY) (24)
e,leqg
T = i 25
! {—LglL” ‘e, le Ll *)

with the lower indices referring to the four blocks of the

matrices. The optimization of Eq. (19) over (v,[, k) remains

a non-convex problem. However, fixing both the location and

the frequency, one can analytically find the optimal ~* for
each pair (I, k) in Eq. (19), which is given by,

70k | X)L ML D) = 72

1

(26)

The latter can then be substituted into Eq. (19) to obtain the
log-likelihood.

The overall workflow of the method is illustrated in the
chart given in Fig. 2. If, on top of the forced oscillation, one
is aware of changes in the topology of the grid, such as a
line that has tripped, this information can be included in the
prior knowledge when performing step 2. One also remarks
that, due to the Kron reduction, the matrix L" is not sparse
anymore, which might affect the computational complexity of
the matrix products in Eq. (19). In practice, this is counter-
balanced by the fact that our method only requires access to
measurements at a fraction of the buses, e.g. only 7 over the
57 buses in the IEEE-57 bus test case presented in Sec. VI.

Authorized licensed use limited to: University of Exeter. Downloaded on October 01,2025 at 03:44:25 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2025.3615451

Optimize
over v,l ,k

Source bus [
Frequency k

Likelihood function
- - N
L (7.0, kl{X. }5' L. M,D)

Kron reduction
L—-L"

Fig. 2: Diagram of the two steps (Secs. IV-A, IV-B) involved in the localization of the forced oscillations.
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Fig. 3: Detection and localization of forced oscillations when
the source is at a generator. The inertia and damping parame-
ters are first learned on the system without forcing for 15min
with measurements at 50Hz. The forcing with frequency
0.48Hz is applied at the leftmost (top panel) and rightmost
(bottom panel) generator. The correct source and frequency
are identified by the largest log-likelihood. The dashed vertical
lines give the frequency 0.48Hz. The amplitude of the forcing
is v = 2, and the time-series correspond to measurements
at 50Hz over 400s. Generators have inertia and damping
parameters, d; = 1s, dy = 1s, m; = 152, my = 1s2.

In the following sections, we illustrate the performance of the
method on synthetic test cases.

Note that, in the following sections, the time-series were
simulated with a noise standard deviation set to unity, which
is smaller than the forcing amplitude but still comparable in
order of magnitude. We argue that this represents relevant
operational conditions within forced oscillation events. Indeed,
if the forcing strength is smaller than the noise amplitude, the
forced oscillation event might not be a concern to the grid
operator due to its barely observable effect.

V. Toy MODEL

We first consider a simple grid made of two generators
and three loads/inverter-based resources as shown in Fig. 1(a).
After performing the Kron reduction only the two generators
remain with a coupling between them given by L" . We assume
that the inertia and damping parameters are learned on the
system without forcing during 15min with measurements at
50Hz only available at generator buses. Then, we perform
the localization step on the system with forcing with mea-
surements of length 400s also sampled at 50Hz and only
available at generator buses. We first illustrate the algorithm
in the simpler situation where the forcing is applied at one
of the generators. Figure 3 shows the log-likelihood obtained
from the optimization of Eq. (19) in this scenario, when a
forcing with a frequency of 0.48Hz is applied at the generators.
One observes that in both cases, the source and frequency
of the forcing are correctly identified. Note that some other
peaks are observed. These correspond to scenarios where
multiple sources of forced oscillation occur at the same time.
As the cost function L represents the log-likelihood divided
by N, the likelihood of these other scenarios are exponen-
tially suppressed as the number of samples N grows, which
guarantees that for a sufficiently long time-series the source
can be correctly identified. Generators inertia and damping
parameters are given in the caption of Fig. 4.

We now move to a more challenging problem of source
identification when the forcing is applied at a load/inverter-
based resource bus. Figure 4 shows the outcome of the
algorithm when a forcing of 0.48Hz is sequentially applied to
each of the load/inverter-based resource bus. In every situation,
the algorithm is able to correctly identify the source bus and
the forcing frequency. Note the symmetry between the left and
right panels which is due to the form of the forcing that are
respectively given by,

1 T 1 T

]."2:—1[0 0 3 1] ’F4:_Z[O 0 1 3] .

27
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Fig. 4: Detection and localization of forced oscillations when the source is at a load/inverter-based resource bus. The inertia
and damping parameters are first learned on the system without forcing for 15min with measurements at 50Hz. In all three
cases when the forcing of 0.48Hz, which is close to a natural frequency of the system (see Fig. 1) is applied at bus 2 (left
panel), 3 (middle panel), 4 (right panel), the correct source and frequency are identified by the largest log-likelihood. The
dashed vertical lines give the frequency 0.48Hz. The amplitude of the forcing is v = 2, and the time-series correspond to
measurements at 50Hz over 400s. Generators have inertia and damping parameters, d; = 1s, do = 1s, m; = 182, moy = 152.

The noise amplitude is set to unity.
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Fig. 5: Detection and localization of forced oscillations when
the source is at a load/inverter-based resource bus. The inertia
and damping parameters are first learned on the system without
forcing for 15min with measurements at 50Hz. The amplitude
of the forcing is v = 1, and the time-series correspond to
measurements at 50Hz over 400s. Generators have inertia and
damping parameters, d; = 0.3s, dy = 1s, m; = 1.4s2,
mo = 1.1s2.

The slight discrepancy in the symmetry between the left and
right panels is due to the different sequences of random
variables used for the simulations and the finite sample size.
This toy model already illustrates that even when the number
of reduced buses is larger than the remaining number of
generators, the algorithm is able to locate the source in the
original grid. To push the algorithm to its limits, we finally

Fig. 6: Topology of the IEEE-57 bus test case, where the
generators are located at the periphery of the grid. The blue
and green load buses produce the same response (up to 10
decimals) at the generators when the forcing is applied at either
of them. The line capacities are heterogeneous [27].

consider a challenging example where the amplitude of the
forcing is comparable to the noise amplitude, and the inertia
and damping parameters are heterogeneous. The outcome of
the method is given in Fig. 5 where the correct load bus
is identified together with the forcing frequency. To further
demonstrate the performance of our method, in the next section
we consider the IEEE-57 bus test case.
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Fig. 7: Detection and localization of forced oscillations when the source is at the generator bus shown in orange (left panel),
at the load bus in pink (center panel), and the load bus in green (right panel) in Fig 6. In the latter case, both sources are
indistinguishable from each other, i.e., both buses have the same likelihood as I'sy = I's3. The forcing frequency of 1Hz as
well as the source are correctly identified by the algorithm in all cases. The negative log-likelihoods for all other buses are
shown in gray. The amplitude of the forcing is v = 6, and the time-series correspond to measurements at 50Hz over 400s. The
inertia and damping parameters at the generators are heterogeneous and given by m; = 2.5s2, d; = 1s fori = 1,2,4,6,7,

mg =4s%, ms = 1.5s%, ds = 1.6s, ds = 1.2s.

VI. IEEE-57 BUS TEST CASE

The IEEE-57 bus test case [27] we consider here is com-
posed of 7 generators following the dynamics of Eq. (1)
and the remaining 50 buses satisfy the algebraic equations
given in Eq. (2). Its topology is shown in Fig. 6. Detecting
and identifying forced oscillations in this grid appears to be
much more challenging than the previous toy model example.
Indeed, all the generators are closely clustered, while many
loads are far from them in terms of geodesic distance. Also,
with measurements from generators only, there are seven times
more unobserved buses than accessible ones. One therefore
expects the identification to be more complicated, in particular
for loads that are far from the generators, as the effective
forcing term in the Kron reduced grid might be very much
similar or sometimes even identical. For example, the effective
forcing I'; when the source is located at the blue or green buses
are essentially the same, which means that they should be
indistinguishable by any algorithm. In the following, we show
that the method is able to correctly identify forced oscillations,
up to possible degeneracy, where the algorithm will point out
to multiple potential locations of the forcing. In all tests, we
assume that we learn the parameters by observing the system
without forcing during 15min with measurements sampled at
50Hz, and then perform the second step with the forcing
using measurement time-series of length 400s also sampled
at 5S0Hz, which is in the typical range for modern PMUs [28],
[29]. We stress again that the measurements are only available
at generator buses. In the following, we consider a forcing
frequency of 1Hz, which is comparable to those observed on
actual power grids [4], The inertia and damping parameters
are taken as heterogeneous and given in the caption of Fig. 7.

Let us first treat the situation of a forcing applied at
generator bus, shown in the left panel of Fig. 7. A forcing
of 1Hz is applied at the orange generator in Fig. 6 and
unambiguously identified by the maximum of the negative log-
likelihood (see left panel Fig. 7).

Next, we consider the more challenging scenario where the
forcing is applied at a load/inverter-based resource bus. In

particular, we apply the forcing at the pink bus in Fig. 6.
The outcome of the algorithm is shown in the middle panel
of Fig. 7 where the method is able to precisely identify the
source of forced oscillations, even when the source is far from
the generator buses.

Finally, we illustrate the degeneracy discussed previously,
where nodes highlighted in green in Fig. 6 is the source of
the forcing. As expected, the negative log-likelihoods that
we obtain for the blue and the green buses are the same
(superimposed green dot and blue curve at 1Hz), as shown
in the right panel of Fig. 7. Therefore, up to some degeneracy
in the system, our method is able to correctly locate the source
of forced oscillations both at unreduced and reduced buses.

VII. COMPARISON WITH EXISTING METHODS

Using the IEEE-57 bus test case, we compare the perfor-
mance of our maximum likelihood approach (ML) to two
recent source localization algorithms: 1) a dissipating energy
flow (EF) method [16], [30]; 2) a fully data-based algorithm
(SP) that leverages the decomposition of the time-series matrix
into the sum of a sparse and a low-rank matrix [31]. While
ML can identify sources both at generators and loads, both
EF and SP can recover sources solely at measured buses, i.e.
at generators. We consider two different amplitudes of the
forcing. We start with a case that is a priori simpler to identify.
We take the amplitude of the forcing to be significantly
larger than the ambient noise, i.e. v = 10. Here, when the
forcing is applied at generators 1 and 8 (see Tab. I), all three
methods successfully recover the source. We then apply the
forcing to load buses 4 and 55. EF and SP can only output
generator buses by design. When the forcing is at bus 4, EF
identifies generator 3 as source. It is worth noting that the
latter is directly connected to the actual source. In this case,
SP identifies generator 8, which is not directly connected to
the actual source. When the forcing is applied at bus 55, EF
and SP find respectively generator 9 and 8 as the source while
the closest generator bus to the source is bus 9. ML correctly
identifies the source of the forcing in both scenarios.
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Source | ML EF SP

1 1 1 1
8 8 8 8
4 4 3 8
55 55 9 8

TABLE I: Comparison of three forced oscillation identification
methods. The maximum likelihood (ML) approach introduced
here, a dissipation energy flow (EF) method [16], [30], a fully
data-based (SP) method [31]. We stress that forcing applied
at load buses are outside the range of applicability EF and
SP were designed for. The forcing parameters are v = 10,
f=1Hz.

Source | ML EF  SP
1 1 1,3 8
8 8 12 8
4 4 8 8
55 55 9 8

TABLE II: Comparison of three forced oscillation identifica-
tion methods. The maximum likelihood (ML) approach intro-
duced here, an energy dissipation flow (EF) method [16], [30],
a fully data-based (SP) method [31]. We stress that forcing
applied at load buses are outside the range of applicability EF
and SP were designed for. The forcing parameters are v =1,
f=1Hz.

Next, we turn to more challenging scenarios where the
amplitude of the forcing is reduced to v = 1 (see Tab. II).
Compared to Tab. I, one remarks that when the forcing is at
the generators, EF and SP identify either the correct source or
a generator not the vicinity of it. ML still correctly uncovers
the malfunctioning generator. When moving to the forcing
applied at the load buses, the conclusions are similar to those
for Tab. I.

VIII. WECC 179-BUS SYSTEM

Finally, we test our localization method on realistic datasets.
We consider the simulated forced oscillation test cases pro-
vided in Ref. [32]. The PMU measurements were generated
using a more detailed grid model than the one given in
Egs. (1)-(2). The grid is the WECC 179-bus system base
case model and is shown in Fig. 8. Because the library
[32] does only provide PMU time-series measurements during
oscillations events and not during normal operating conditions,
we do not perform step 1 (IV-A) of our method. Instead, we
use the parameters given in [32] which are d; = 4s Vi € G. We
set the inertia parameters as being proportional to the active
power of the generators and scale all the inertia parameters
such that max; m; = 20s2. As our method neglects ohmic
losses on the transmission lines, we built the Laplacian matrix
of the grid from the positive line susceptance parameters,
which yields a disconnected grid. In the three cases considered
here, namely the F_2, F_3 and 6F_1, we keep only the
connected part of the grid where the event is happening i.e.
generator buses 30, 35, 65, 70, 77, 79, and load buses 31, 32,
33, 34, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 80, 82, 87,
91, 95 in Fig. 8. In terms of PMU measurements, this means
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Fig. 8: Topology of the WECC 179-bus system from the
library [32]. Empty circles represent generators while filled
circles correspond to substations and load buses.

that the input of our algorithm is 6 angle and 6 frequency time-
series whose length is 40s. Below, we apply step 2 (IV-B) of
our method on three different test cases from [32].

A. Test case F_2

The first case we investigate is the F_2 from the library
provided in Ref. [32]. For this simulated event, a forced
sinusoidal signal is injected into the excitation system at
generator 79 (top of Fig. 8) with a frequency f = 0.86Hz,
which is close to a natural mode of the grid. In Fig. 9 we
show the outcome of the method, i.e. the values of the negative
log-likelihood for all possible location and frequency of the
forced oscillation. The blue dots correspond to the generator
79 which is identified as the generator bus with the largest
value around the actual forcing frequency f = 0.86Hz. The
green and orange symbols which have the same negative
likelihood correspond to load buses 78 and 74. Our method
doesn’t identify the actual source correctly, even though it is
among the largest negative likelihood values. The two load
buses that are found by the method are close to the actual
source.
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Fig. 9: Detection and localization of forced oscillations for the
test case F_2 from the library [32] . The forcing of f = 0.86Hz
is applied at the generator bus 79. The blue dots correspond
to the negative log-likelihood for generator 79; The green
and orange symbols which have the same negative likelihood
correspond respectively to bus 78 and bus 74; the grey lines
correspond to all the other buses.

B. Test case F_3

Then, we move to the case F_3 where a forced sinusoidal
signal is injected into the excitation system at generator 77
(top of Fig. 8) with a frequency f = 0.37Hz. In Fig. 10, one
observes that our method fails to identify the generator 77
as the sources of the forced oscillation. Instead, the generator
65 (orange squares) is found to be the source, with bus 66
(green stars) having a similar value for the negative log-
likelihood. Both of them are close to the actual source whose
log-likelihood is given by the blue dots.

C. Test case F_6_1

Finally, we consider the case F_6_1 where the forcing is
a rectangle wave with fundamental frequency f = 0.1Hz
injected into the excitation system of generator 79 . The results
are shown in Fig. 11 where one observes that the identified
source at f = 0.1Hz is generator 30 (blue dots), which is
close to the actual source whose log-likelihood is given by
the orange triangles. The largest negative likelihood is found
at f = 0.7Hz where both bus 74 (green squares) and bus
78 (red stars) have similar values. These buses are also rather
close to the actual source. Therefore, the method still provides
important information about the source of forced oscillations
in this case.

IX. CONCLUSION

Due to the aging of the existing grid assets and the ongoing
energy transition that considerably enhances the fluctuations
and increases the number of inverter-based resources con-
nected to the grid, forced oscillations are expected to become
more prevalent, while making the problem of locating them
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Fig. 10: Detection and localization of forced oscillations for
the test case F_3 from the library [32]. The forcing of
f = 0.3THz is applied at the generator bus 77 (blue dots).
The orange squares correspond to the negative log-likelihood
for generator 65; the green stars for bus 66; the grey lines
correspond to all the other buses.
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Fig. 11: Detection and localization of forced oscillations for
the test case 6F_1 from the library [32]. The forcing of f =
0.1Hz is a rectangle wave and is applied at the generator bus
79 given by the orange triangles. The blue dots correspond
to the negative log-likelihood for generator 30, which is close
to the actual source in Fig. 8; green squares and red stars
correspond respectively to bus 74 and 78 which are also close
to the actual source; the grey lines correspond to all the other
buses.
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much harder. Here, we proposed a data driven algorithm that
uses prior knowledge about the grid to locate the source
and identify the frequency of forced oscillations in trans-
mission power grids. We considered a system composed of
traditional generators with second-order swing dynamics, and
loads/inverter-based resources that satisfy algebraic equations
and thus do not have intrinsic dynamics. By means of a
Kron reduction, we focused on time-series measurements
observed at generator buses which are used, together with
the Kron-reduced Laplacian matrix, first to learn the inertia
and damping parameters when there is no forcing, and second
to define a log-likelihood function that we then optimize.
The method is able to identify correctly forced oscillations
when the source is located at generator and load/inverter-
based resource buses. Our method correctly pinpoints the
source or a set of equivalent sources, even when the number
of observed generator buses is much smaller than the total
number of buses in the original grid. Importantly, it is able to
identify the source of forced oscillations even when the later
is not directly measured. Eventually, we tested the algorithm
on realistic PMU measurements simulated using grid and
generator models that are more detailed than the ones assumed
by our method. In this brief exploration, we found that our
localization algorithm can provide useful information about
the actual source of the forced oscillation. In the three cases
tested here, it identified generators or buses close to the actual
source, using a scarce amount of data. This is promising for the
next development of the method to account for more detailed
grid dynamics.

Further work should consider forced oscillation source
localization under the assumption of a limited prior knowledge
on the Kron-reduced Laplacian matrix, and under the case
of incomplete observation of generators in the grid. One
may include as well heterogeneous standard deviations of
the noise [33] in the optimization and account for time-
correlation [34]. Eventually, one should extend the method
to account for natural oscillations and oscillations originating
from spurious signals injected into the generator using more
detailed dynamics.

APPENDIX
A. Details about likelihood functions

Here, we give details about the steps to go from the
likelihood function Eq. (14) to the equivalent form Eq. (19).
In Eq. (14), one has

N—-1
% dSovisivi =[AL], MTS ' M[A, ],
=0
[AX,], M'S'M[AX, ],
—AX I MTEM[A,],  (28)
—[Ay], MTE "M[AX, ],
— Ay, — AXy ]y MTS (k)
—u(k) T, M[A,, - AX, ], ,

where in the latter equation, only the last two terms depend
on v, l, k, ¢. The other terms can therefore be dropped

to define a new likelihood function that will have the same
extrema as the original one. Then, to obtain Eq. (19), one
performs the explicit optimization over the phase ¢, noticing

that only a single term actually depends on the ¢, which is
—% ’F;Egl_lM(A — AX)| . Rewriting the modulus using
traces and rearranging terms yields the expression in Eq. (19).
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