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Abstract: Recent measurements have reported non-Gaussian tails in the distribution of
frequency data in electric power grids. Large frequency deviations may induce grid instabilities
and it is therefore crucial to understand how noise disturbances with long, non-Gaussian tails
propagate. Here, we investigate how fluctuations in power feed-in, characterized by non-zero
cumulants of their distribution, propagate through high-voltage power grids. Unlike previous
investigations which focused on the white-noise limit, we consider the limit of long noise
correlation time, where power feed-in fluctuates over times longer than the inherent dynamical
time scales of the grid - the relevant regime for large-scale, high-voltage distribution grids. We
show that in this limit, the skewness and kurtosis of the power feed-in distribution propagate
similarly as its variance, independently of the distribution of inertia. Non-Gaussianities from
individual sources of noise therefore persist throughout the entire network. This finding is
corroborated by numerical results on a realistic model of the synchronous grid of continental
Europe.

Keywords: Frequency fluctuations in power grids, non-Gaussian noise propagation.

1. INTRODUCTION

Recent analyses of large frequency datasets have uncovered
non-Gaussianities in the distribution of local frequency
fluctuations in AC power grids (Haehne et al., 2019; Ry-
din Gorjão et al., 2020, 2021; Schäfer et al., 2018), with
distributions exhibiting long tails and occasional large
increments. The source of these large frequency devia-
tions is often attributed to the presence of new renewable
sources of energy (Milan et al., 2013; Haehne et al., 2019;
Wolff et al., 2019) – exhibiting fluctuating and uncertain
power productions, with reduced electromechanical iner-
tia (Machowski et al., 2008; Ulbig et al., 2014) – though
the lack of data predating the rise of new renewables
makes it difficult to confirm that conjecture directly. Large
frequency deviations are an important risk factor for the
safety of operation of AC electric power systems. It is
therefore crucial to understand how non-Gaussian distur-
bances propagate through electric power networks. Many
papers have investigated the propagation of disturbances
originating from noisy power feed-in into power grids. For a
necessarily incomplete list, the reader is referred to (Siami
and Motee, 2016; Kettemann, 2016; Haehne et al., 2019;
Tyloo et al., 2019; Pagnier and Jacquod, 2019b; Tumash
et al., 2019; Wolff et al., 2019; Schröder et al., 2020). Most
of these investigations focused on white Gaussian noise,
with few notable exceptions. Based on numerical simula-
tions, (Haehne et al., 2019) conjectured that the variance
of frequency fluctuations decays faster as a function of the
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distance to its source than its kurtosis. A similar effect
has been furthermore reported in (Wolff et al., 2019),
where non-Gaussianities seemed to be amplified in cer-
tain electric networks. Different noise probability distribu-
tions have been investigated, however time-uncorrelated
white-noises have been considered almost systematically.
White-noise distributions correspond to the limit of noise
fluctuating over a time scale shorter than all other time
scales characterizing the system. Recent analysis have
however concluded that damping and network-dynamical
time scales do not exceed few seconds in large-scale AC
power grids (Tyloo et al., 2019; Pagnier and Jacquod,
2019b), therefore, the relevant limit for significant, per-
sistent power feed-in fluctuations is the opposite limite
of long noise correlation times. This motivates us to go
beyond the white-noise regime.

In this manuscript, we investigate the propagation of volt-
age angle waves induced by Gaussian and non-Gaussian
noise disturbances with long correlation time, through
large-scale meshed power grids. The short-time voltage
angle dynamics is commonly modelled by the swing equa-
tions (Machowski et al., 2008). Fluctuating power feed-
in, generate waves that spread through the system. We
model these fluctuations as noisy source terms, with a
distribution characterized by its cumulants and a long
correlation time τ0. Given a source of non-Gaussian noise,
we calculate the skewness and kurtosis of the voltage
angle distributions at any node on the power grid, over
the distribution of the power feed-in noise at a given
location. We find that when τ0 is the longest time scale,
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these cumulants propagate throughout the power network
just like the variance. Because non-vanishing cumulants
correspond to deviations from Gaussianity, we conclude
that non-Gaussian fluctuations of power feed-in with long
correlation times propagate over the whole power grid.
These analytical findings are corroborated by numerical
simulations on a realistic model of the synchronous grid of
continental Europe.

2. MATHEMATICAL NOTATION

We write vectors as v ∈ Rn, matrices as M ∈ Rn×n,
and diagonal matrices made of vector components as
diag({vi}).
The power networks are modeled as undirected weighted
graphs G = (N , E ,B) where N is the set of its n
nodes/vertices, E is the set of edges, and B = {Bij > 0}
is the set of edge weights, corresponding to line sus-
ceptances between connected nodes i and j. The graph
Laplacian L(0) ∈ Rn×n is the symmetric matrix defined
as L(0) =

∑
i<j Bije(i,j)e

�
(i,j), with e(i,j) = ei − ej in

terms of the unit vector ei ∈ Rn whose components read
(ei)l = δil, with the Kronecker δ. The graph Laplacian
has eigenvalues {λ1, . . . λn} corresponding to an orthonor-
mal basis of eigenvectors {u1, . . . ,un}. The zero row and
column sum property of L(0) implies that λ1 = 0 and
that u�

1 = (1, . . . , 1)/
√
n. In connected graphs, λα > 0

for α = 2, . . . , n. A weighted Laplacian matrix L will be
considered below [see Eq. (2)], where the edge weights are
normalized by the cosine of voltage angle differences at the
corresponding nodes, defined by the operational steady-
state of the grid.

The effective resistance distance between any two nodes
i and j of the network is defined as Ωij = e�(i,j)L

†e(i,j),

with the Moore-Penrose pseudoinverse L† of the graph
Laplacian matrix (Klein and Randić, 1993; Stephenson
and Zelen, 1989). This quantity is a graph theoretical
distance metric satisfying the properties: i) Ωii = 0 ∀i, ii)
Ωij ≥ 0 ∀i �= j, and iii) Ωij ≤ Ωik+Ωkj ∀i, j, k. It is known
as the resistance distance because if one replaces each edge
(k, l) of G by a resistor with a conductance 1/Rkl = Bkl,
then Ωij is equal to the equivalent network resistance when
a current is injected at node i and extracted at node j
with no injection anywhere else. The resistance distance
can be written Ωij =

∑
α≥2 λ

-1
α (uα,i − uα,j)

2, in terms of

the eigenvalues and eigenvectors of L (Klein, 1997; Xiao
and Gutman, 2003).

The average resistance distance between a given node i and
all the other nodes in the network define the resistance
centrality C1(i) = (n−1

∑
j Ωij)

−1 of node i, and the
average resistance distance over all pairs of nodes give the
resistance graph efficiency also called the Kirchhoff index,
Kf1 =

∑
i<j Ωi,j (Klein and Randić, 1993; Stephenson and

Zelen, 1989).

We will consider noisy disturbances in the form of fluc-
tuating power feed-in δp(t). The probability distribution
of the latter defines an ensemble over which we calcu-
late averages, denoted by 〈. . .〉. We differentiate moments,
〈δθpi 〉, and cumulants, 〈δθpi 〉c, of the distribution of voltage
angles.

3. DYNAMICS OF AC POWER GRIDS

We consider the voltage angle and frequency dynamics
of a high voltage AC power network in the lossless, DC
power flow approximation. This standard approximation
assumes uniform and constant voltage amplitude, non-
resistive power transmission lines and small voltage angle
differences. The stationary power flow equations p(0) =
L(0)θ(0) relates the vector of active power injections p(0)

to the vector of voltage angles θ(0) in the operational
stationary state. The Laplacian matrix L(0) of the graph
represents the electric power grid, i.e. its nonzero matrix
elements are given by minus the susceptance Bij of the
transmission lines between connected nodes i and j.

Dynamical effects set in when the system is brought out of
equilibrium by some disturbance. Here we consider a time-
dependent power feed-in perturbation p(t) = p(0) + δp(t),
which locally perturbs the balance between the mechanical
torque supplied by the rotating machine and the electrical
torque output of the alternator. Under the assumption
that each network node has a synchronous machine (gener-
ator or consumer) of rotational inertia mi > 0 and damp-
ing coefficient di > 0, and assuming that the disturbance
is weak enough that it primarily affects voltage angles and
not their amplitudes, the network dynamics is governed
by the swing equations (Machowski et al., 2008). In the
frame rotating at the nominal frequency of the network,
and under the just mentioned assumptions, they read

Mδθ̈ = −Dδθ̇ + δp(t)−Lδθ, (1)

with θ(t) = θ
(0)
i + δθ(t), M = diag({mi}) and D =

diag({di}), and the weigthed Laplacian matrix

Lij =



−Bij cos(θ

(0)
i − θ

(0)
j ) , for i �= j ,∑

k

Bik cos(θ
(0)
i − θ

(0)
j ) , for i = j . (2)

Eq. (1) describes the small-signal stability problem Ma-
chowski et al. (2008), on which we focus.

4. MODAL DECOMPOSITION

Eq. (1) is a linear differential equation that governs the
propagation of the local disturbance modeled by a time-
dependent source term δp(t). The Laplacian matrix L re-
places the Laplace operator of continuous wave equations.
It encodes a discrete, meshed complex power network
defined between load and generator nodes. Load nodes in
principle have mi = 0 and a damping parameter di sig-
nificantly smaller than generators. However, it is possible
to Kron-reduce the network (Kron, 1939) into an effective
network with modified line susceptances connecting only
inertiaful, generator nodes. This transformation is based
on Schur’s complement formula (Horn and Johnson, 1986),
and since the reduced load nodes have no inertia and a
much smaller damping term, this reduction modifies the
dynamics on the generators only marginally. In our ana-
lytical treatment, we will consider noise propagation from
Eq. (1) for a Kron-reduced network. An approximation we
make in our analytical treatment, but not in our numerics,
is that damping and inertia are uniform, di = d, mi = m.
This is a standard assumption when analytically calculat-
ing voltage angle and frequency deviations (Tegling et al.,
2015; Paganini and Mallada, 2017; Poolla et al., 2017;
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these cumulants propagate throughout the power network
just like the variance. Because non-vanishing cumulants
correspond to deviations from Gaussianity, we conclude
that non-Gaussian fluctuations of power feed-in with long
correlation times propagate over the whole power grid.
These analytical findings are corroborated by numerical
simulations on a realistic model of the synchronous grid of
continental Europe.

2. MATHEMATICAL NOTATION

We write vectors as v ∈ Rn, matrices as M ∈ Rn×n,
and diagonal matrices made of vector components as
diag({vi}).
The power networks are modeled as undirected weighted
graphs G = (N , E ,B) where N is the set of its n
nodes/vertices, E is the set of edges, and B = {Bij > 0}
is the set of edge weights, corresponding to line sus-
ceptances between connected nodes i and j. The graph
Laplacian L(0) ∈ Rn×n is the symmetric matrix defined
as L(0) =

∑
i<j Bije(i,j)e

�
(i,j), with e(i,j) = ei − ej in

terms of the unit vector ei ∈ Rn whose components read
(ei)l = δil, with the Kronecker δ. The graph Laplacian
has eigenvalues {λ1, . . . λn} corresponding to an orthonor-
mal basis of eigenvectors {u1, . . . ,un}. The zero row and
column sum property of L(0) implies that λ1 = 0 and
that u�

1 = (1, . . . , 1)/
√
n. In connected graphs, λα > 0

for α = 2, . . . , n. A weighted Laplacian matrix L will be
considered below [see Eq. (2)], where the edge weights are
normalized by the cosine of voltage angle differences at the
corresponding nodes, defined by the operational steady-
state of the grid.

The effective resistance distance between any two nodes
i and j of the network is defined as Ωij = e�(i,j)L

†e(i,j),

with the Moore-Penrose pseudoinverse L† of the graph
Laplacian matrix (Klein and Randić, 1993; Stephenson
and Zelen, 1989). This quantity is a graph theoretical
distance metric satisfying the properties: i) Ωii = 0 ∀i, ii)
Ωij ≥ 0 ∀i �= j, and iii) Ωij ≤ Ωik+Ωkj ∀i, j, k. It is known
as the resistance distance because if one replaces each edge
(k, l) of G by a resistor with a conductance 1/Rkl = Bkl,
then Ωij is equal to the equivalent network resistance when
a current is injected at node i and extracted at node j
with no injection anywhere else. The resistance distance
can be written Ωij =

∑
α≥2 λ

-1
α (uα,i − uα,j)

2, in terms of

the eigenvalues and eigenvectors of L (Klein, 1997; Xiao
and Gutman, 2003).

The average resistance distance between a given node i and
all the other nodes in the network define the resistance
centrality C1(i) = (n−1

∑
j Ωij)

−1 of node i, and the
average resistance distance over all pairs of nodes give the
resistance graph efficiency also called the Kirchhoff index,
Kf1 =

∑
i<j Ωi,j (Klein and Randić, 1993; Stephenson and

Zelen, 1989).

We will consider noisy disturbances in the form of fluc-
tuating power feed-in δp(t). The probability distribution
of the latter defines an ensemble over which we calcu-
late averages, denoted by 〈. . .〉. We differentiate moments,
〈δθpi 〉, and cumulants, 〈δθpi 〉c, of the distribution of voltage
angles.

3. DYNAMICS OF AC POWER GRIDS

We consider the voltage angle and frequency dynamics
of a high voltage AC power network in the lossless, DC
power flow approximation. This standard approximation
assumes uniform and constant voltage amplitude, non-
resistive power transmission lines and small voltage angle
differences. The stationary power flow equations p(0) =
L(0)θ(0) relates the vector of active power injections p(0)

to the vector of voltage angles θ(0) in the operational
stationary state. The Laplacian matrix L(0) of the graph
represents the electric power grid, i.e. its nonzero matrix
elements are given by minus the susceptance Bij of the
transmission lines between connected nodes i and j.

Dynamical effects set in when the system is brought out of
equilibrium by some disturbance. Here we consider a time-
dependent power feed-in perturbation p(t) = p(0) + δp(t),
which locally perturbs the balance between the mechanical
torque supplied by the rotating machine and the electrical
torque output of the alternator. Under the assumption
that each network node has a synchronous machine (gener-
ator or consumer) of rotational inertia mi > 0 and damp-
ing coefficient di > 0, and assuming that the disturbance
is weak enough that it primarily affects voltage angles and
not their amplitudes, the network dynamics is governed
by the swing equations (Machowski et al., 2008). In the
frame rotating at the nominal frequency of the network,
and under the just mentioned assumptions, they read

Mδθ̈ = −Dδθ̇ + δp(t)−Lδθ, (1)

with θ(t) = θ
(0)
i + δθ(t), M = diag({mi}) and D =

diag({di}), and the weigthed Laplacian matrix

Lij =



−Bij cos(θ

(0)
i − θ

(0)
j ) , for i �= j ,∑

k

Bik cos(θ
(0)
i − θ

(0)
j ) , for i = j . (2)

Eq. (1) describes the small-signal stability problem Ma-
chowski et al. (2008), on which we focus.

4. MODAL DECOMPOSITION

Eq. (1) is a linear differential equation that governs the
propagation of the local disturbance modeled by a time-
dependent source term δp(t). The Laplacian matrix L re-
places the Laplace operator of continuous wave equations.
It encodes a discrete, meshed complex power network
defined between load and generator nodes. Load nodes in
principle have mi = 0 and a damping parameter di sig-
nificantly smaller than generators. However, it is possible
to Kron-reduce the network (Kron, 1939) into an effective
network with modified line susceptances connecting only
inertiaful, generator nodes. This transformation is based
on Schur’s complement formula (Horn and Johnson, 1986),
and since the reduced load nodes have no inertia and a
much smaller damping term, this reduction modifies the
dynamics on the generators only marginally. In our ana-
lytical treatment, we will consider noise propagation from
Eq. (1) for a Kron-reduced network. An approximation we
make in our analytical treatment, but not in our numerics,
is that damping and inertia are uniform, di = d, mi = m.
This is a standard assumption when analytically calculat-
ing voltage angle and frequency deviations (Tegling et al.,
2015; Paganini and Mallada, 2017; Poolla et al., 2017;

Grunberg and Gayme, 2018; Pagnier and Jacquod, 2019a).
Below, we validate our analytical results with numerical
simulations not relying on this homogeneity assumption.

We want to compute the moments µp = 〈δθpi 〉, p ≤ 4 of
the distribution of angle deviations at any node on the
network and relate them to the statistical properties of
the noisy source term. We perform a modal expansion
of the voltage angles over the eigenmodes {uα} of L,
δθ(t) =

∑
α cα(t)uα , to obtain

m c̈α + d ċα + λαcα = δp(t) · uα , (3)

where Luα = λαuα, with λα ≥ 0, α = 1, . . . N . Eq. (3)
is a differential equation for a damped, driven harmonic
oscillator. We solve it using Laplace transforms to ob-
tain (Tyloo and Jacquod, 2019)

cα(t) =m−1e−(γ+Γα)t/2

∫ t

0

eΓαt2

×
∫ t2

0

e(γ−Γα)t1/2 δp(t1) · uα dt1dt2 , (4)

with Γα =
√

γ2 − 4λα/m and γ = d/m . From Eq. (4),

the pth voltage angle moment µp contains an average
〈δpi1(t1)δpi2(t2) . . . δpip(tp)〉, over the product of p sources
of noise, inside exponential integrals. We calculate µp

assuming zero-average feed-in noise at node i0 in the
network. Specifically, the first two moments are given by

〈δpi(t1)〉= 0 , (5a)

〈δpi(t1)δpj(t2)〉= σ2 δijδii0e
−|t1−t2|/τ0 . (5b)

This defines the noise correlation time τ0, which we take
as the largest time-scale. To take non-Gaussianities into
account, we further consider finite skewness and kurtosis
of the noise distribution as

〈δpi(t1)δpj(t2)δpk(t3)〉= a3 σ
3 ∆ijkδii0 , (6a)

〈δpi(t1)δpj(t2)δpk(t3)δpl(t4)〉c = a4 σ
4 ∆ijklδii0 , (6b)

where the long correlation time limit has already been
considered to shorten the notation, ∆ijk �= 0 for i =
j = k only (similarly for ∆ijkl) and 〈. . .〉c explicitely
refers to the cumulant, which in particular substracts all
partial pairings such as 〈δpi(t1)δpj(t2)〉〈δpk(t3)δpl(t4)〉.
The parameters a3,4 �= 0 characterize non-Gaussianities
in the noise distribution. They correspond to skewed
distributions (a3 �= 0), with longer tails (a4 > 0) or both.

Eq. (3) makes it clear that, beside τ0, the other time
scales are the damping time γ−1 = m/d, the period Tα =√

m/λα of the αth oscillating mode and the combination
γT 2

α = d/λα of the two. For the synchronous grid of
continental Europe, a time scale analysis found γ−1 �
2.5s, Tα < 1s and γT 2

α < 0.4s ∀α, and the long correlation
time regime is already reached for τ0 � 5 − 10s (Pagnier
and Jacquod, 2019b; Tyloo et al., 2019). Corrective actions
such as line disconnections and/or reconnections occur on
much shorter time scales, however they do not repeat
themselves more than few times. It is hard to imagine
how any persistent noise source would oscillate on time
scales shorter than at least few seconds, which justifies to
consider the long correlation time limit.

5. VOLTAGE ANGLE VARIANCE AND HIGHER
CUMULANTS

We calculate the variance, skewness and kurtosis of the
voltage angle at any node i on the network, given a
disturbed power feed-in at node i0. With the modal expan-
sion discussed above, the variance is given by 〈δθ2i (t)〉 =∑

α,β〈cα(t)cβ(t)〉uα,iuβ,i, with cα,β(t) given in Eq. (4).
Similar expressions give the skewness and the kurtosis. The
results are the sum of terms that decay exponentially with
t as ∝ exp[−λαt], exp[−t/τ0] and terms that are constant
in time. We consider the limit of large observation times,
where only the constant terms matter. Considering the
long noise correlation time limit, τ0 � γ−1, Tα, γT

2
α a

straightforward though tedious calculation gives,

lim
τ0→∞

〈δθpi 〉c = ap


σ

∑
α≥2

uα,i0uα,i

λα




p

, (7)

where we set a2 = 1 to cast the cumulants in a single
equation. The full calculation leading to Eq. (7) will be
given elsewhere, as it is too long to fit in this paper. In the
Appendix, we give it for inertialess Kuramoto oscillators.

The cumulants are given by the pth power of the Green’s
function for the linear operator L, from the noise source i0
to the observation node i. For optical or electronic waves
propagating through disordered mesoscopic systems, such
quantities decay as power laws with the distance between
i0 and i, when averaged over a relatively narrow but
high-lying spectral interval (Akkermans and Montambaux,
2007). Eq. (7) instead corresponds to a “zero-energy”
Green’s function, indicating that fluctuations are trans-
mitted by few low-lying, long-wavelength eigenmodes of L.
The most remarkable thing is that, from Eq. (7), standard-
ized higher cumulants are given by 〈δθpi 〉c/|〈δθ2i 〉|p/2 = ±ap
(with a possible minus sign for odd cumulants), regardless
of the distance between the measured node and the noise
source. This is our main result: non-Gaussian fluctuations
originating from a single noise source with long correlation
time propagate just as Gaussian fluctuations do, over the
whole system. This result is in particular independent of
inertia, in agreement with our earlier findings (Tyloo and
Jacquod, 2021).

A second interesting result comes from the fact that the
Green’s function can be rewritten in terms of the effective
resistance distance between i0 and i and the resistance
graph efficiency, a centrality corresponding to the average
of the resistance distance over all pairs of nodes in the
whole graph, a quantity sometimes called the Kirchhoff
index (Klein and Randić, 1993; Stephenson and Zelen,
1989). A direct calculation gives (remember that

∑
i uα,i =

0 for the α ≥ 2 eigenmodes of L, since they are orthogonal
to the constant α = 1 eigenmode)

∑
α≥2

uα,i0uα,i

λα
=

C−1
1 (i0) + C−1

1 (i)− Ωi0i − 2Kf1/n
2

2
.(8)

where Ωi0,i is the resistance distance between node i0
and i, C1(i) = (n−1

∑
j Ωij)

−1 is the resistance centrality

of node i and Kf1 =
∑

i<j Ωi,j is the resistance graph

efficiency/the Kirchhoff index. These three quantities are
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all positive, therefore, together with Eq. (7), Eq. (8) means
that the sign of the third cumulant is determined by
the balance between the centralities of the input and
measurement nodes on the one hand, and the resistance
distance between them on the other hand. In particular,
the skewness changes sign some distance away from The
standardized third cumulant is therefore constant in mag-
nitude all over the network, with however sign changes.

Fig. 1. Numerical simulation of Eq. (1) on the PanTa-
GruEl model of the synchronous grid of continental
Europe (Pagnier and Jacquod, 2019b; Tyloo et al.,
2019) shown in the top panel. The disturbance is a
non-Gaussian noisy signal injected at the node colored
in pink and indicated by the red arrow. The nine
histograms show the locally normalized distributions
of angle deviation at the node with corresponding
colors. The non-Gaussian asymmetry of the injected
noise (see pink histogram) persists over the whole
network, with a skewness inversion fully corroborating
Eqs. (7) and (8).

6. NUMERICAL RESULTS

We confirm our analytical results with numerical simula-
tions on PanTaGruEl, a realistic model of the very high
voltage synchronous grid of continental Europe (Pagnier
and Jacquod, 2019b; Tyloo et al., 2019). A map of the

model is shown in the top panel of Fig. 1. The model is
not Kron-reduced. It is hetereogeneous in the dynamical
parameters mi and di, in particular, load nodes have
mi = 0. Therefore, our numerical simulations test our
analytical results in a realistic setting that is in particu-
lar not restricted by the above assumptions of constant
inertia and damping. Eq. (1) is integrated, for a noisy
disturbance located in Spain, and indicated on the map
by a red arrow (pink node). The noisy disturbance has a
non-Gaussian distribution whose histogram is shown in the
pink histogram panel of Fig. 1. The fluctuations in angle
voltages are recorded on eight other nodes, indicated by
color dots in the model map. The normalized distributions
of angle voltages at each of these nodes is shown in the
histogram panels. The first, main observation is that these
distributions are the same on all nodes, up to an inversion
of the horizontal axis, δθi(t) ↔ −δθi(t). That the shape of
the distributions remain the same corroborates our result,
Eq. (7), according to which the standardized cumulants
are the same in absolute value on all nodes. Second, one
sees that the voltage angle distribution on the blue node
is the same as on the pink disturbance node, while all
other measured distributions are left-right inverted, i.e.
with δθi(t) ↔ −δθi(t). This follows directly from Eq. (8).
When i is very close to i0, the sign of the odd cumulants
is given by the sign of C−1(i0)−Kf/n2. If i0 is less central
than the average node, as is the case for the chosen pink
node in Fig. 1, that sign is positive, because C−1(i0) is
large for peripheral nodes, while Kf/n2 is the average of
C−1(i). When the distance between i and i0 increases,
so does the resistance distance Ωi0,i between disturbance
and measurement, while simultaneously C−1(i) decreases.
Eventually, this will change the sign of the Green’s func-
tion in Eq. (8), and with it, the sign of all standardized odd
cumulants. Note that the sign of these odd cumulants may
already be negative when measurement and source nodes
are close to one another, if i0 lies in a central position on
the network – when C1(i0) is large. In that case, there is
no sign change and the odd cumulants of the voltage angle
deviations are negative all over the network.

7. CONCLUSION

We have reported on recent and preliminary investigations
of non-Gaussian disturbance propagation in high-voltage
AC power grids. The motivation is that deviations from
Gaussian distributions have recently been observed in
voltage angle and frequency distributions, and their origin
remains an open question. In particular it remains to
be understood whether the currently unfolding energy
transition, with the associated substitution of traditional
power generation with new renewable sources of energy
will be accompanied by larger voltage angle and frequency
deviations.

In this manuscript, we looked at how a local, non-Gaussian
disturbance characterized by the cumulants of its proba-
bility distribution propagates across a large-scale meshed
power grid. Our main contribution has been to identify a
key ingredient that has so far been negected in similar in-
vestigations: the correlation time of the noisy disturbance,
and its position with respect to other time scales in the
system. We focused on a little explored regime where this
correlation time is the largest time scale. Earlier time scale
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all positive, therefore, together with Eq. (7), Eq. (8) means
that the sign of the third cumulant is determined by
the balance between the centralities of the input and
measurement nodes on the one hand, and the resistance
distance between them on the other hand. In particular,
the skewness changes sign some distance away from The
standardized third cumulant is therefore constant in mag-
nitude all over the network, with however sign changes.

Fig. 1. Numerical simulation of Eq. (1) on the PanTa-
GruEl model of the synchronous grid of continental
Europe (Pagnier and Jacquod, 2019b; Tyloo et al.,
2019) shown in the top panel. The disturbance is a
non-Gaussian noisy signal injected at the node colored
in pink and indicated by the red arrow. The nine
histograms show the locally normalized distributions
of angle deviation at the node with corresponding
colors. The non-Gaussian asymmetry of the injected
noise (see pink histogram) persists over the whole
network, with a skewness inversion fully corroborating
Eqs. (7) and (8).

6. NUMERICAL RESULTS

We confirm our analytical results with numerical simula-
tions on PanTaGruEl, a realistic model of the very high
voltage synchronous grid of continental Europe (Pagnier
and Jacquod, 2019b; Tyloo et al., 2019). A map of the

model is shown in the top panel of Fig. 1. The model is
not Kron-reduced. It is hetereogeneous in the dynamical
parameters mi and di, in particular, load nodes have
mi = 0. Therefore, our numerical simulations test our
analytical results in a realistic setting that is in particu-
lar not restricted by the above assumptions of constant
inertia and damping. Eq. (1) is integrated, for a noisy
disturbance located in Spain, and indicated on the map
by a red arrow (pink node). The noisy disturbance has a
non-Gaussian distribution whose histogram is shown in the
pink histogram panel of Fig. 1. The fluctuations in angle
voltages are recorded on eight other nodes, indicated by
color dots in the model map. The normalized distributions
of angle voltages at each of these nodes is shown in the
histogram panels. The first, main observation is that these
distributions are the same on all nodes, up to an inversion
of the horizontal axis, δθi(t) ↔ −δθi(t). That the shape of
the distributions remain the same corroborates our result,
Eq. (7), according to which the standardized cumulants
are the same in absolute value on all nodes. Second, one
sees that the voltage angle distribution on the blue node
is the same as on the pink disturbance node, while all
other measured distributions are left-right inverted, i.e.
with δθi(t) ↔ −δθi(t). This follows directly from Eq. (8).
When i is very close to i0, the sign of the odd cumulants
is given by the sign of C−1(i0)−Kf/n2. If i0 is less central
than the average node, as is the case for the chosen pink
node in Fig. 1, that sign is positive, because C−1(i0) is
large for peripheral nodes, while Kf/n2 is the average of
C−1(i). When the distance between i and i0 increases,
so does the resistance distance Ωi0,i between disturbance
and measurement, while simultaneously C−1(i) decreases.
Eventually, this will change the sign of the Green’s func-
tion in Eq. (8), and with it, the sign of all standardized odd
cumulants. Note that the sign of these odd cumulants may
already be negative when measurement and source nodes
are close to one another, if i0 lies in a central position on
the network – when C1(i0) is large. In that case, there is
no sign change and the odd cumulants of the voltage angle
deviations are negative all over the network.

7. CONCLUSION

We have reported on recent and preliminary investigations
of non-Gaussian disturbance propagation in high-voltage
AC power grids. The motivation is that deviations from
Gaussian distributions have recently been observed in
voltage angle and frequency distributions, and their origin
remains an open question. In particular it remains to
be understood whether the currently unfolding energy
transition, with the associated substitution of traditional
power generation with new renewable sources of energy
will be accompanied by larger voltage angle and frequency
deviations.

In this manuscript, we looked at how a local, non-Gaussian
disturbance characterized by the cumulants of its proba-
bility distribution propagates across a large-scale meshed
power grid. Our main contribution has been to identify a
key ingredient that has so far been negected in similar in-
vestigations: the correlation time of the noisy disturbance,
and its position with respect to other time scales in the
system. We focused on a little explored regime where this
correlation time is the largest time scale. Earlier time scale

analysis identify the regime of long correlation time as
relevant for large-scale transmission grids, and we found
that non-Gaussianities propagate similarly as Gaussian
fluctuations. In particular, we showed analytically and
confirmed numerically that for a single source of noise, all
standardized cumulants of the voltage angle distribution
are spatially constant, everywhere on the power network,
regardless of the presence and distribution of the electro-
mechanical inertia of traditional generators. This is im-
portant as it shows how a localized, non-Gaussian feed-in
disturbance may persist, and actually perturb a large-scale
power grid over long distances.

The next steps are, first to connect these results to the
other limit of short correlation times, second to consider
the superposition of several sources of noise, third to
extend this investigation to the voltage frequency. Work
along those lines is in progress and will be reported
elsewhere.

Appendix A. CUMULANTS FOR KURAMOTO
OSCILLATORS

The full calculation - including inertia - of our main analyt-
ical result, Eq. (7), is too long to fit in this size-restricted
paper. Here we sketch the calculation of the voltage angle
moments for inertialess oscillators corresponding to Eq. (1)
with m = 0. We perform the modal expansion discussed in
the main text, leading to Eq. (3), also with m = 0, whose
solution reads

cα(t) = exp[−λαt]

∫
dt′ exp[λαt

′] δP(t′) · uα . (A.1)

From the expansion δθi(t) =
∑

cα(t)uαi of the voltage
angle at site i over the ith component of the eigenmodes
of L, one obtains the pth moment of the voltage angle dis-
tribution 〈δθpi (t)〉 =

∑
α1,...αp

〈cα1(t)...cαp(t)〉uα1i...uαpi.

From Eq. (A.1), these moments are therefore given by
exponential integrals, once the noise moments of Eqs. (5)
and (6) are inserted.

For the variance, one has

〈cα(t)cβ(t)〉=
∑
i0,j0

uα,i0uβ,j0 exp[−(λα + λβ)t] (A.2)

×
∫∫ t

0

dt1dt2e
λαt1+λβt2〈δPi0(t1)δPj0(t2)〉 ,

which, with Eq. (5b), gives

〈δθ2i (t)〉= 2σ2τ−1
0

∑
α,β

uα i0uβ i0uα iuβ i

(λα + λβ)(λα + τ−1
0 )(λβ + τ−1

0 )

+σ2
∑
α,β

uα i0uβ i0uα iuβ i

(λα + τ−1
0 )(λβ + τ−1

0 )
, (A.3)

after two exponential integrals have been calculated. In
the limit of long correlation times, Eq. (A.3) directly leads
to Eq. (7) with p = 2.

Higher moments are calculated in the same way, which also
leads to Eq. (7) in the limit of long correlation times. For
the case with finite inertia, calculational steps are also the
same, but are more complicated because of the doubling
of the exponential integrals to be calculated from the
expression (4) instead of (A.1). The resulting expression

are lengthy, however, they also lead to Eq. (7) in the limit
of long correlation time.
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