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Abstract— Many recent works in control of electric power
systems have investigated their synchronization through global
performance metrics under external disturbances. The ap-
proach is motivated by fundamental changes in the operation
of power grids, in particular by the substitution of conventional
power plants with new renewable sources of electrical energy.
This substitution will simultaneously increase fluctuations in
power generation and reduce the available mechanical inertia.
It is crucial to understand how strongly these two evolutions
will impact grid stability. With very few, mostly numerical
exceptions, earlier works on performance metrics had to rely
on unrealistic assumptions of grid homogeneity. Here we show
that a modified spectral decomposition can tackle that issue in
inhomogeneous power grids in cases where disturbances occur
on time scales that are long compared to the intrinsic time
scales of the grid. We find in particular that the magnitude
of the transient excursion generated by disturbances with
long characteristic times does not depend on inertia. For
continental-size, high-voltage power grids, this corresponds to
power fluctuations that are correlated on time scales of few
seconds or more. We conclude that power fluctuations arising
from new renewables will not require per se the deployment
of additional rotational inertia. We numerically illustrate our
results on the IEEE 118-Bus test case and a model of the
synchronous grid of continental Europe.

Index Terms— Low inertia power systems, high-voltage trans-
mission grids, transient stability, performance metrics.

I. INTRODUCTION

THE penetration of new renewable sources of electrical
energy is currently increasing in most electric power

grids worldwide, as more and more traditional power plants
are phased out. A major concern is obviously that this sub-
stitution reduces the available inertia while it simultaneously
induces larger fluctuations in power generation [1]. Both
changes may jeopardize grid stability, either individually
or taken together. A key issue is accordingly to evaluate
how much power grids need to be adapted to their result-
ing new modes of operation – for instance through line
extensions or deployment of resources providing ancillary
services [2]. To ensure the stability of the grid and the
safety of power supply, it is important to clarify the role
of the generators dynamical parameters that will be affected
by this transition, namely the rotational inertia and the
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frequency damping / droop control. Both are going to be
globally reduced, moreover their geographical distribution
will be modified. To try to identify which of these dynamical
parameters are most crucial, where they should be primarily
deployed, as well as when and in what operating conditions
they are most needed, analytical and numerical works have
investigated the robustness of electric power grids under
external disturbances. The response of power grids to ex-
ternal disturbances has been investigated through quadratic
performance metrics [3]–[12], eigenvalue damping ratios and
frequency overshoots [13], rate of change of frequency [8],
[14] or disturbance wave propagation [15], [16]. Except for
numerical results [13], [15], [16], these works considered
disturbances with infinitely short time scales, such as white
noise power fluctuations or instantaneous power injection
changes [3], [5]–[7], [9]–[12], or with infinitely long time
scales, such as step changes in power injection [8], [14]. All
of the analytical works relied on one of the two homogeneity
assumptions that inertia and frequency damping are the same
everywhere, or that their ratio is.

These homogeneity assumptions are not representative of
real power grids, where in particular, consumer nodes are in-
ertialess but with small, albeit finite frequency damping [17],
[18]. Often, this inconsistency is circumvented by invoking a
prior Kron reduction absorbing the inertialess nodes into an
effective network. One then measures the robustness of that
reduced network, which may or may not be related to the
robustness of the original one, because Kron reduction does
not capture the dynamics of the reduced, inertialess nodes.
To the best of our knowledge, Ref. [11] is the first work
that tolerates deviations from homogeneity in an analytical
calculation of a quadratic performance metric. Its results
suggest that grid robustness is crucially sensitive to the
geographic distribution of frequency control, while inertia
has to be distributed rather evenly. This conclusion has to be
revisited because, first, Ref. [11] is based on an approximate
method tolerating only small deviations from homogeneity
and second, the only disturbances it considers are long power
losses.

In this manuscript, we investigate the response of power
systems to colored noisy power fluctuations. We quantify the
response to these disturbances by a quadratic performance
metric measuring the primary control effort necessary to
absorb the fault [7]. Our analytical approach still relies on a
homogeneity assumption. Our results however emphasize the
role played by the different time scales in the problem: the
performance metric depends on inertia only when the charac-
teristic time scale of the disturbance is long compared to all
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other time scales in the system. In that case we conjecture,
and confirm numerically, that our analytical results also apply
to heterogeneous systems. In continental-size high-voltage
power grids, the network time scales are shorter than few
seconds [19]. Therefore, noise fluctuating on time scales of
tens of second or more induces transients whose amplitude,
duration and oscillations are largely independent of inertia,
and our analytical results directly apply to most disturbances
on realistic, inhomogeneous high voltage power grids.

The manuscript is organized as follows. Section II defines
our mathematical notations. Section III defines the power
network model and gives an analytical expression for its
linear response. Section IV introduces performance metrics
and gives analytical expressions for them. Of particular
interest are the short- and long-correlation time asymptotics.
In Sec. V, we numerically confirm our theory on both the
IEEE 118-Bus test case and the PanTaGruEl model of the
synchronous grid of continental Europe. We discuss time
scales in such high-voltage power grids and show that the
corresponding performance metric is given by the long noise
correlation time asymptotic limit. Our conclusions are given
in section VI.

II. MATHEMATICAL NOTATION

Given a vector v ∈ Rn, we denote its transpose by v>. We
write M = diag{mi} for the diagonal n × n matrix with
m1,m2, ...,mn ∈ R on its diagonal. The j-th unit vector
with a single nonzero component is (êj)i = δij . The scalar
product of two vectors u,v ∈ Rn is written u>v and the
scalar product of a vector with itself is v2 = v>v. The
statistical average of a random variable x ∈ R is x . Finally,
considering a diagonal matrix M , we denote its pth power
as Mp = diag{mp

i } .

III. POWER GRIDS AND THEIR RESPONSE TO
FLUCTUATING POWER INJECTIONS

A. Swing dynamics near synchrony

Transient dynamics in high-voltage power networks is
commonly modelled by the swing equations which describe
the dynamics of voltage angles assuming constant voltage
amplitudes. In the lossless line approximation, appropriate
to very high-voltages [18], they read

mi ω̇i + di ωi = Pi −
∑
j

bij sin(θi − θj), (1)

where each network node is labeled i = 1, ..., n with a
voltage angle θi. Equation (1) is written in a rotating frame,
so that the frequency ωi = θ̇i refers to the deviation from
the rated frequency of 50 or 60 Hz. Each node has inertia
and damping control parameters mi and di respectively, and
an active power Pi that is generated (Pi > 0) or consumed
(Pi < 0). The coupling between node i and j is given by the
susceptance bij ≥ 0 of the corresponding power line. The
operational state θ(0) is a synchronous stationary solution to
Eq. (1).

Equation (1) is governed by two sets of time scales.
The first set is given by the ratio between inertia and

damping coefficients γ−1
i ≡ mi/di. It corresponds to the

local relaxation of synchronous machines. The second one is
determined by the network characteristic time scales di/λα
given by damping coefficients and the eigenvalues of the
weighted Laplacian, see Eq. (3) below. Depending on these
two sets of time scales, perturbations are locally damped
or spread across the network. In a synthetic synchronous
grid of continental Europe with constant damping and inertia
corresponding to the average of their true values, it has been
found that all modes are underdamped and propagate through
the whole system with d/λα < γ−1, ∀α [19].

We next investigate the response of the system to a time-
dependent disturbance P (t) = P + δP (t) acting on the
operational state θ(0), following which angles become time-
dependent, θ(t) = θ(0) +δθ(t). The small-signal response is
governed by dynamical equations obtained after linearizing
Eq. (1) about θ(0),

M ω̇ +Dω = δP (t)− L(θ(0)) δθ , (2)

where we introduced inertia and damping matrices, M =
diag{mi} and D = diag{di} and the weighted Laplacian
matrix L({θ(0)

i }) with matrix elements

Lij =

{
−bij cos(θ

(0)
i − θ

(0)
j ) , i 6= j ,∑

k bik cos(θ
(0)
i − θ

(0)
k ) , i = j .

(3)

This Laplacian is minus the stability matrix of the linearized
dynamics, and since we consider a stable synchronous state,
it is positive semidefinite, with a single vanishing eigenvalue
λ1 = 0 with eigenvector u1 = (1, 1, ...1)/

√
n. All other

eigenvalues are positive, λα > 0, α = 2, 3, ...n. Equation (2)
can be integrated via a spectral decomposition provided
either: (i) both M and D commute with L, then Eq. (2) can
be integrated in the eigenspace of L, or (ii) M−1D = γ I ,
in which case Eq. (2) can be integrated in the eigenspace of
D−1/2 LD−1/2.

B. Analytical solution for constant damping-to-inertia ratio

We consider the case (ii) above of constant inertia-to-
damping ratio, mi/di = γ−1 ∀i . To calculate the response
of the system, we first perform a change of variable δϕ =
D1/2δθ on Eq. (2). We obtain

γ−1δϕ̈+ δϕ̇ = D−1/2δP −D−1/2 LD−1/2 δϕ . (4)

We choose this normalization with D, rather than with
M as proposed in Ref. [8], because it allows us to treat
the inertialess case with γ−1 = 0, from which we will
extrapolate the realistic case where consumer nodes are in-
ertialess and generator nodes have nonhomogeneous inertia.
Equation (4) can be solved by expanding angle deviations as
δϕ(t) =

∑
α cα(t)uDα , over the eigenvectors uDα of LD =

D−1/2 LD−1/2. The matrix LD is no longer Laplacian but
it still has a zero-mode uD1 = (

√
d1, ...,

√
dn)/

√∑
i di.

Angle shifts of δϕ along uD1 do not modify the synchronous
state because u1 ∝ D−1/2uD1 . Note also that, by or-
thogonality with uD1 , eigenvector components must satisfy∑
i

√
diu

D
α,i = 0 for α ≥ 2.



Proposition 3.1: The general solution to Eq. (4) reads

δϕi(t) =
∑
α

γe
−γ−Γα

2 t

∫ t

0

eΓαt1

×
∫ t1

0

[D−1/2δP (t2)]>uDα e
γ−Γα

2 t2dt2dt1 u
D
α,i ,

(5)
with Γα =

√
γ2 − 4λDα γ where λDα is the eigenvalue

associated with the eigenvector uDα of LD.
Proof: We first expand angle deviations over the

eigenbasis of LD as δϕi(t) =
∑
α cα(t)uDα,i. From the

orthogonality of the eigenbasis, (uDα )>uDβ = δαβ , one
straightforwardly rewrites Eq. (4) as

γ−1c̈α + ċα = (D−1/2δP )>uDα − λDα cα , (6)

for α = 1, ..., n . The expansion coefficients cα(t) can be
read from Eq. (5), and direct differentiation shows that they
solve this equation. This completes the proof.

IV. DYNAMICAL PARAMETERS AND TRANSIENT
EXCURSIONS

A. Quantifying frequency excursions

To evaluate the global response of the system to an exter-
nal disturbance, we use the following performance metric

P(T ) = T−1

∫ T

0

(ω> − ω>)D(ω − ω) dt , (7)

because it measures the primary control effort and there-
fore has a physical meaning [7]. The quantity ω> =
(∆̇, ∆̇, ..., ∆̇) with ∆̇(t) =

∑
i diωi(t)/

∑
i di gives the

average frequency deviation over all nodes in the system.
Because synchronous states are defined modulo any homo-
geneous angle shift, the transformation θ(0)

i → θ
(0)
i +C does

not change the synchronous state. Accordingly only phase
and frequency shifts with

∑
i δθi(t) = 0 and

∑
i diωi(t) = 0

matter. This is included in P by subtracting the average ω.
That P(T ) is a performance metric is easily understood: low
values indicate that the system absorbs the perturbation with
little fluctuations, while large values indicate a large transient
excursion around the initial synchronous state. Using the
above change of variables, δϕ̇ = D1/2ω =

∑
α ċα(t)uDα ,

Eq. (7) becomes,

P(T ) = T−1
∑
α≥2

∫ T

0

ċ2α(t)dt . (8)

This can be calculated using the explicit expression for
cα(t) from Eq. (5), once a perturbation δP (t) is given.

Proposition 4.1: Consider a noisy disturbance acting on
Nn of the network nodes. The noise ensemble is Gaussian
and defined by its vanishing first moments, δPi(t) = 0,
and its second moments δPi(t)δPj(t′) = δijδP

2
0i exp[−|t−

t′|/τ0] with the noise correlation time τ0. The performance

metric P∞ for primary control effort averaged over this noise
ensemble is given by

P∞ =
∑
α≥2

∑
i∈Nn δP

2
0iu

D
α,i

2
d−1
i

λDα τ0 + 1 + γ−1τ−1
0

. (9)

Corollary 1: In the limit of short noise correlation time,
τ0 � γ−1, λDα

−1 one has

P∞ = τ0
∑
i∈Nn

δP 2
0i (1/mi − 1/

∑
j

mj) . (10)

Corollary 2: In the opposite asymptotic limit, τ0 �
γ−1, λDα

−1 one has

P∞ = τ−1
0

∑
α≥2

∑
i∈Nn δP

2
0iu

D
α,i

2
d−1
i

λDα
. (11)

Proof: Inserting the time derivative of Eq. (5) into
Eq. (8) and taking the average over the noise ensemble
with δPi(t)δPj(t′) = δijδP

2
0i exp[−|t−t′|/τ0] gives Eq. (9),

with few straightforwardly calculated exponential integrals.
The two asymptotic results (10) and (11) are easily obtained
by a Taylor expansion, keeping only the first non-vanishing
term. To obtain Eq. (10), we also used

∑
α≥2 u

D
α,i

2
=∑

α≥1 u
D
α,i

2 − uDα,1
2

= 1− di/
∑
i di.

Remark 1: The short correlation time asymptotic of
Eq. (10) agrees with the result of [7] obtained for either
single-pulsed or averaged white-noise perturbations.

Remark 2: The noise correlators are defined either as
time averages, δPi(t)δPj(t′) = limτ→∞τ

−1
∫ τ

0
δPi(t +

τ ′)δPj(t
′ + τ ′)dτ or as averages over different noise se-

quences.
Remark 3: Finite-time corrections to Eqs. (9)–(11)

disappear as O(1/T ) as T →∞.

Proposition 4.2: Under the same assumptions as Proposi-
tion 4.1, the variance var [P(T )] of the performance metric
for primary control effort over the noise ensemble vanishes
as ∼ T−1 + O(1/T 2) as T →∞.
The proof proceeds through direct calculation of var [P(T )].
It is too long to fit in this article and here we only sketch it.
From Eq. (8) one has

var [P(T )] = T−2
∑
α,β≥2

∫∫ T

0

ċ2α(t)ċ2β(t′)dtdt′ − P(T )
2
.

(12)

From Eq. (5), each ċα,β contains a noise term δP . The noise
average in the first term on the right-hand side of Eq. (12)
therefore consists in pairings of four noise terms. There are
three such contributions. The first one pairs the two δP ’s
in ċ2α(t) and the two δP ’s in ċ2β(t). This contribution is

cancelled by a similar pairing in P(T )
2
. The other two con-

tributions pair δP ’s across indices α and β and accordingly,
they constrain the values that t and t′ can take with respect
to one another, |t − t′| . τ0. Accordingly, the double time
integral in Eq. (12) gives a contribution ∼ Tτ0, instead of
∼ T 2, resulting in var [P(T )] ∼ T−1.



Remark 4: Proposition 4.2 means that for specific noisy
disturbances satisfying the assumption of Proposition 4.1
and for long enough observation times T � τ0, P∞ =
P∞ + O(T−1/2). The statistical average is therefore repre-
sentative of specific noise disturbances for sufficiently long
observation time. The validity of Proposition 4.2 is illustrated
numerically in Fig. 1 (c).

The two asymptotic limits of large and small τ0 are
particularly interesting as they shed light on the influence
of dynamical parameters, in particular on the interplay be-
tween local disturbance absorption by inertia and long-range
propagation through low-lying network modes. First, in the
short correlation time limit given by Eq. (10), P∞ explicitly
depends on inertia but not on the coupling network. This
reflects the fact that, in the white-noise limit, the perturbation
remains local and is easily absorbed, if there is enough
inertia. Second, Eq. (11) shows that, in the long correlation
time limit, P∞ does not depend on inertia. This suggests that
changing inertia in any direction will not change P∞ in the
limit of long noise correlation time. This is a conjecture since
Eq. (11) has been derived under the assumption of constant
damping-to-inertia ratio, γ = di/mi. Below we numerically
confirm this conjecture. Simultaneously, Eq. (11) also shows
that, in the long correlation time limit, P∞ is determined
by the structure of the coupling network, with the modes
with smallest eigenvalues having the largest influence. Those
modes are extended over the whole network in large power
grids, as is illustrated in Fig. 2 (b). Accordingly, in the limit
of long noise correlation time, the disturbance is able to
propagate over large distances in the network, and inertia
has little influence on this large-scale propagation.

Remark 5: It is important to realize that fluctuations of
renewable energy sources occur on time scales that are
large compared to the intrinsic time scales of the power
system [20]. As a matter of fact, time scales in the syn-
chronous grid of continental Europe have been found to
satisfy γ−1 ' 2.5s and λDα

−1
. 0.5s [19]. Provided the

above conjecture is corroborated, Eqs. (9)–(11) suggest that
fluctuations from new renewables excite network modes and
are efficiently absorbed by optimizing the distribution of
damping with little regard for inertia. This conjecture is
numerically confirmed below.

Remark 6: Similar conclusions as in Eqs. (9)–(11) regard-
ing local inertia absorption vs. large-scale mode propagation
are obtained in the case of step disturbances corresponding
to sudden power losses, as a function of their duration τ0.

Remark 7: The lossless line approximation used in this
paper does not account for ohmic dissipation. We expect
that the latter enhances mode damping and accordingly
undermines disturbance propagation in the case of noise with
long correlation time, but that it affects only marginally our
result for short correlation time. Investigations beyond the
lossless line approximation would be very welcome but lie
beyond the scope of the present paper.

V. NUMERICAL SIMULATIONS

A. Dynamical parameters for simulations

We consider two different cases: (i) cases with homo-
geneous damping-to-inertia ratio di/mi = γ; (ii) realistic
heterogeneous cases, using the nonlinear swing dynamics of
Eq. (1). In the homogeneous case, we used di = α|P (0)

i |/ω0,
where P

(0)
i is the produced/consumed power at nominal

frequency ω0, and set mi = γ−1di. In the heterogeneous
case, the inertia parameter vanishes on consumer nodes
and is mi = 2Hi|P (0)

i |/ω0 on generator nodes, where Hi

depends on the type of generator [18]. Damping is given by
Eq. (5.24) and Table 4.3 in Ref. [18] for generators and by
di = α|P (0)

i |/ω0 for consumer nodes. In all cases we use
ω0 = 2π× 50Hz. For the IEEE-118 Bus test case discussed
in Section V-B, α = 1.5 and Hi = 5s. For the PanTaGruEl
European model discussed in Section V-D), α = 1.5 and
Hi varies according to the generator type as described in
Ref. [21].

B. IEEE 118-Bus test case

The main prediction from Eqs. (9)-(11) is that, for noise
correlation τ0 that is longer than the other characteristic time
scales in the system, the performance metric P∞ does not
depend on inertia parameters. This was conjectured from
Eq. (11) where inertia does not appear. Fig. 1 shows per-
formance metric obtained from individual noisy disturbance
of a single node, repeating the operation for all nodes in the
IEEE 118-Bus test case. As disturbance, we take Gaussian
noise with the same first two moments as in Proposition 4.1.
First, the primary control effort P∞ is calculated for a
constant damping-to-inertia ratio (blue crosses), then for a
distribution of dynamical parameters where generator nodes
have inertia while consumer nodes do not (orange squares
and crosses). As predicted by Eq. (11), for long correlation
time of the noise [panel (b), γτ0 = 40], the two distributions
of dynamical parameters give the same P∞, corroborating
our conjecture that it does not depend on inertia. We have
found (but do not show) that the performance metric only
depends on the damping distribution in that case.

For short noise correlation time, on the other hand,
Eq. (10) explicitly depends on the damping-to-inertia ratio
di/mi = γ , and we expect that the numerical data will
differ from the theoretical prediction once this ratio is no
longer constant. This is confirmed in Fig. 1 [panel (a),
γτ0 = 4 × 10−3] where with di/mi = γ, numerical data
fall on the theory (blue crosses). However, once di/mi is
no longer constant, numerical data and theoretical prediction
differ significantly (orange symbols). Quite interestingly, we
found that for noisy perturbations on generator nodes with
inertia, the theory still gives a remarkably accurate estimate
for the primary control effort P∞. An understanding of this
remarkable agreement would be highly welcome, particularly
since it could justify dynamic performance analysis on Kron
reduced networks.



Fig. 1: Comparison between numerical calculations obtained by time-evolving Eq. (1) and the theoretical result of Eq. (11)
for the primary control effort, for short correlation time γτ0 = 4× 10−3 (a) and long correlation time γτ0 = 40 (b) in the
IEEE 118-Bus test case. Averages are made over 10 noisy sequences and standard deviations are shown by barely visible
vertical line. Blue crosses correspond to constant damping-to-inertia ratio, di/mi = γ = 0.4s−1, while orange symbols
correspond to inhomogeneous, non-vanishing inertia on generator nodes (squares) and inertialess consumer nodes (crosses).
On generation nodes one has γiτ0 ∈ [30, 60] . (c) Ratio between standard deviation and average of the primary control effort
for the IEEE 118-Bus test case. For long enough T , the ratio scales as T−1/2, confirming Prop. 4.2. Averages are made
over 40 different noise sequences.

C. Time scales in high-voltage electric power grids

We have shown that the primary control effort against
fluctuating disturbances in the form of colored noise behaves
very differently depending on the position of the noise
correlation time relative to the characteristic time scales
in the system. Furthermore the primary control effort is
captured by our theory even for inhomogeneous dynamical
parameters, when the noise correlation time is long enough.
It is therefore desirable to identify what regime applies to
a realistic high-voltage power grid subjected to fluctuating
sources of power, in particular those generated by new
renewable sources of energy. To that end, we consider in the
next paragraph a realistic model of the synchronous grid of
continental Europe [19], [21], with the following time scales

λDα
−1

< 0.5s , for α = 2, ..., n , (13a)

γ−1 =
〈mi〉
〈di〉

= 2.5s , (13b)

where 〈 . . . 〉 means that we take the average over all nodes
in the grid. It is commonly accepted that power fluctuations
from renewable energy sources such as wind turbines or
photovoltaic panels fluctuate on time scales that are larger
than both time scales in Eq. (13) [20]. Therefore, the asymp-
totic limit of large noise correlation time, corresponding to
Eq. (11) applies, and we expect that the primary control effort
as measured by Eq. (7) is influenced only by damping, and
not by inertia. Numerical results to be presented in the next
paragraph corroborate this expectation.

As a side-remark we note that when the perturbation cor-
responds to the sudden disconnection of a power generator,
controls usually try to reconnect the bus several times quickly
after the fault (typically within few AC cycles). The typical
time scale for such a perturbation is then less than several
if not all system’s time scales, and inertia obviously matters

to absorb such sudden faults, as it is predicted by Eq. (10).

D. The PanTaGruEl European model

To further illustrate the influence of dynamical parame-
ters on the primary control effort, we numerically compute
Eq. (7) on the large-scale PanTaGruEl model of the European
high-voltage transmission grid [21]. The model is shown on
Fig. 2 (b). It has 3809 nodes and 4944 lines. More details can
be found in Ref. [21]. We considered three different cases,
(i) a homogeneous situation that corresponds to today’s grid
in terms of its global amount of inertia, with γτ0 = 4 and
γ = di/mi constant, (ii) a homogeneous situation where
the inertia is reduced by a factor 10 , i.e. γτ0 = 40, and
γ = di/mi constant, and (iii) a realistic situation with inho-
mogeneous damping parameters and where inertia vanishes
on consumer nodes and is inhomogeneous on production
nodes as described in Section V-A and Ref. [21], with τ0
larger than all other time scales in the system. Remarkably,
Fig. 2 (a) shows that the primary control effort for all cases
is well predicted by Eq. (11). This confirms our main finding
that, for fluctuations with a correlation time longer than any
other characteristic time scale in the system, inertia does not
affect the primary control effort, Eq. (11). Quite surprisingly,
an overall reduction of the total available inertia by a factor
of 10 does not affect the primary control effort, Eq. (7).

VI. CONCLUSION

With the ongoing energy transition resulting in strongly
increased penetrations of new renewable sources of electrical
energy, a question of crucial importance is how grid stability
will evolve, given the resulting reduction of globally avail-
able rotational inertia and enhanced power fluctuations. We
have shown that reduced inertia may pose problems only for
perturbation occurring/fluctuating on very short time scales,
shorter than all other characteristic time scales in the system.
In continental-size transmission grids, these time scales are



Fig. 2: (a) Comparison between numerical calculations obtained by time-evolving Eq. (1) and the theoretical result of Eq. (11)
for the PanTaGruEl model of the synchronous grid of continental Europe [21] shown on panel (b). Three cases are considered.
The first two are grids with γ = di/mi constant, with today’s average inertia (orange crosses) and an inertia reduced by a
factor of 10 (blue crosses). The third case corresponds to a realistic situations as discussed in the text, with γiτ0 ∈ [20, 1600]
on generation nodes. In all cases, τ0 is the longest time scale, consequently, the inertia-independent theoretical prediction
of Eq. (11) accurately captures all numerical data. Averages are made over 10 noisy sequences. (b) Network eigenmodes
of LD with the first two non-vanishing eigenvalues. These slow modes are extended over the whole network, with higher
amplitudes on peripheral nodes. Disturbances on the four buses highlighted in light blue correspond to the smallest primary
control effort. These buses lay in the center of the network where the slow modes have small amplitudes. Disturbances on
the four buses in dark red, on the other hand, have largest primary control effort. They are located at the periphery of the
network where the slow modes have large amplitudes [19]. This shows that large primary control effort for noise with large
correlation time correspond to excitations of slow network modes, which in their turn propagate the disturbance over large
distances in the network.

shorter than few seconds, consequently, power fluctuations
from new renewables will not affect grid stability per se.

Inertia is of course important to absorb sudden faults
occurring on very short time scales such as line faults or
disconnection/reconnection of large power plants and so
forth. Simultaneously, our result of Eq. (10) indicates that
the resulting primary control effort is independent of the grid
topology. Accordingly, optimal inertia distribution needs to
follow the distribution of potential faults, for instance being
larger in regions with higher density of generators. A similar
conclusion was drawn in Refs. [7] and [11].
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