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ABSTRACT

Oscillatory networks subjected to noise are broadly used to model physical and technological systems. Due to their nonlinear coupling, such
networks typically have multiple stable and unstable states that a network might visit due to noise. In this article, we focus on the assessment
of fluctuations resulting from heterogeneous and spatially correlated noise inputs on Kuramoto model networks. We evaluate the typical,
small fluctuations near synchronized states and connect the network variance to the overlap between stable modes of synchronization and the
input noise covariance. Going beyond small to large fluctuations, we introduce the indicator mode approximation that projects the dynamics
onto a single amplitude dimension. Such an approximation allows for estimating rates of fluctuations to saddle instabilities, resulting in phase
slips between connected oscillators. Statistics for both regimes are quantified in terms of effective noise amplitudes that are compared and
contrasted for several noise models. Bridging the gap between small and large fluctuations, we show that a larger network variance does not
necessarily lead to higher rates of large fluctuations.

Published by AIP Publishing. https://doi.org/10.1063/5.0163992

Noise unavoidably affects complex networked systems, inducing
small excursions around stable collective states and, eventually,
leading to basin escape and transitions from one collective state
to another. In most analyses, noise inputs are assumed to be
homogeneous in intensities and uncorrelated among the net-
work components. However, such assumptions are typically not
satisfied in many real systems and, therefore, represent only a
first approximation. Here, we go beyond this approximation and
investigate the effect of both heterogeneous and spatially corre-
lated noise on the two regimes of small and large fluctuations in
Kuramoto oscillator networks.

I. INTRODUCTION

Coupled oscillators play a crucial role in the modeling of
various physical and engineered systems ranging from power
grids to neuronal dynamics.1–4 The combination of their coupling
and internal dynamics gives rise to collective behaviors such as

synchronization, in which the coupled units exhibit coherent
dynamics that is often oscillatory.5–7 Typically, the interplay of the
coupling network topology and the inherent nonlinearity of interac-
tions produces multiple stable and unstable states that exist for the
same set of internal parameters.3,4,6,8,9 In particular, for phase oscil-
lator networks with sufficiently large coupling, states in which all
oscillators rotate collectively with the same frequency (called syn-
chronized states for short) can be represented by network fixed
points, each with their own basin of attraction.8,10–13 Due to exter-
nal perturbations or noise, an oscillator network will explore its
initial basin of attraction. If the noise is small, the excursions will
remain in the vicinity of the initial synchronized state for relatively
long time scales compared to local relaxation times. However, even-
tually noise and the nonlinear dynamics will organize in such a
way as to drive a network to points of instability, resulting in pos-
sible transitions from one basin to another.14–17 In either case, it
is important to assess the induced fluctuations and possible tran-
sitions, as they can harmfully impact the dynamics of network
systems.18
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Noisy oscillatory networks have been investigated from var-
ious angles, focusing, for example, on the relation between fluc-
tuations and topology,19–21 noise propagation,22,23 noise-induced
synchronization,24 and network escape and large fluctuations result-
ing from Gaussian and non-Gaussian noise.16,17,25–28 However, most
works have assumed homogeneous and/or uncorrelated noise. Yet,
heterogeneity and spatial correlation are important realistic ingredi-
ents in physical and spatially embedded networks. Indeed, since the
physical parameters in models of oscillator networks have hetero-
geneity, e.g., in the natural frequencies and the coupling topology,
we should not expect homogeneity in the noise as well, particularly
if the noise derives from these parameters. For instance in power-
grid models, fluctuations typically arise from the input power at
each node, which has a mean proportional to an oscillator’s natu-
ral frequency.29 If the mean is different on the nodes, it is reasonable
to expect the temporal variation around the mean to be as well. Also,
correlation should be expected from the geographical positions and
coupling of a network’s components as well as from unmodelled
interactions between oscillators. Recent works have explored small
fluctuations emerging from noise with time and space correlations
and addressed how to devise networks with, e.g., spatial embedding
that optimally cancels noise and correlation patterns that optimally
improve network coherence.19,30 Here, we aim to further consider
heterogeneous noise intensities and go beyond to include large fluc-
tuations. In particular, we analyze the response of phase oscillator
networks in both regimes of small fluctuations (SFs) around syn-
chronized states and large fluctuations (LFs), eventually leading to
saddle instabilities and phase slips between connected oscillators.
We also clarify the relation between SFs and LFs, namely, do SFs
give any information about eventual transitions? We show that, sur-
prisingly, larger network variance in the SF regime does not always
translate into shorter escape times in the LF regime.

The dynamical system we consider is a network of Kuramoto
oscillators subjected to noise, whose time-evolution is governed by
a set of differential equations,31

θ̇i = ωi + K
∑

j

Aij sin
(

θj − θi

)

+
∑

m

Gimξm(t), (1)

where i ∈ {1, 2 · · · , N}.3,5 In Eq. (1), ωi is the natural frequency of
the ith oscillator,32 and the coupling between oscillators is given by
an adjacency matrix Aij multiplied by a coupling strength K.3,5,12

The noise sources {ξ1, ξ2, . . . , ξM} are i.i.d. white Gaussian processes
with 〈ξm(t)ξn(t

′)〉 = σ 2δmnδ(t − t′) and a feed-in matrix G. Given G,
the covariance for the input noise is GGT, which can encode both
heterogeneous intensities and spatial correlation patterns.

If the coupling is sufficiently large, Eq. (1) admits a stable
state of phase-locked synchronization, which is a fixed-point, θ

∗,
satisfying ωi − ω̄ + K

∑

j Aij sin(θ∗
j − θ∗

i ) = 0 ∀i.12 Without loss of

generality, we assume the average frequency is zero, ω̄ =
∑

i ωi/N
= 0, where we can always redefine the natural frequencies relative
to the average. In general, the stable fixed point θ

∗ emerges through
an inverse saddle-node bifurcation as K is increased above a critical
threshold, K = KSN.12,16,33,34 The bifurcation implies the existence of
an unstable saddle fixed point, θ

s. It has been shown that near the

critical threshold the distance to saddles scales as |θ s − θ
∗| ∼

√
δ,

where K = KSN(1 + δ).16,17 In general, the noise in Eq. (1) can cause

fluctuations to θ
s, which result in network desynchronization and

phase slips between oscillators.17,26,35 In the small noise limit, noise
effects can be usefully separated and analyzed in terms of small fluc-
tuations (SFs) that entail relatively modest phase deflections from
synchronization |θ − θ

∗| � |θ s − θ
∗| and large fluctuations (LFs)

where |θ − θ
∗| ∼ |θ s − θ

∗|. Our goal is to understand how different
intensity distributions and spatial correlations in the noise implicit
in G affect the occurrence of both SFs and LFs.

This article proceeds as follows: in Sec. II, we perform a
linear analysis of Eq. (1) around the synchronized state, which
allows us to determine the noise-induced variance for general G. In
Secs. II A–II C, we further analyze the SF variance within
the context of heterogeneous and uncorrelated noise on the
nodes, correlated edge noise, and collective-mode noise. For each
noise model, we extract analytical insight by finding the vari-
ances in limiting cases of weak stability, large coupling, and
special model networks. In Sec. III, we estimate the rate of
large fluctuations to saddle instabilities by constructing a single-
mode approximation and then solve for the mode amplitude’s
large deviations. In Sec. III A, we compare the effective ampli-
tudes of LFs and SFs for the noise models introduced in
Secs. II A–II C and show that, typically, they are only moderately
correlated. In addition, we indicate when LF rates are maximized for
different noise models. Section IV offers a summary and discussion
of future research directions.

II. SMALL FLUCTUATIONS

To begin, let us explore how noise drives the network dynam-
ics to produce SFs. If the noise intensities are small enough, the
response of the network is well approximated by the first-order
Taylor expansion of Eq. (1) around the synchronized state, θ(t)
= θ

∗ + δθ(t),

δ̇θ i = −K
∑

j

Aij cos
(

θ∗
i − θ∗

j

)(

δθi − δθj

)

+
∑

m

Gim ξm(t). (2)

Defining the Laplacian matrix,

L̃ij =
{

− Aij cos
(

θ∗
i − θ∗

j

)

, i 6= j,
∑

k Aik cos
(

θ∗
i − θ∗

k

)

, i = j,
(3)

and denoting its eigenvectors uα with u1,i = 1/
√

N and eigenval-
ues λ1 = 0 < λ2 < · · · < λN, one can expand the response as δθi(t)
=

∑

α cα(t)uα,i. One should notice that deviations of the phases
along u1 do not modify the dynamics. Thus, we only focus on devi-
ations orthogonal to u1. The general solution to Eq. (2) is given
by

δθi(t) =
N

∑

α=2

e−λα K t

∫ t

0

eλα K t′
∑

k,m

Gmk ξk uα,m dt′ uα,i. (4)

The latter expression is useful to calculate the moments of SFs,20

e.g., 〈δθ 2
i (t → ∞)〉, which converges to a finite value after a tran-

sient of order λ−1
2 . As we are interested in the interplay between

network topology and noise heterogeneity and spatial correlation,
and not in the local dynamics, we focus on the total network variance
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FIG. 1. Network variance vs small fluctuation amplitude from simulations of
Eq. (1) with heterogeneous and uncorrelated noise on the nodes. Each point
represents a random realization of the noise intensities, which are i.i.d. (a)
IEEE-30 test bus network withK = 1.6KSN andσ 2 = 0.02; (b) UK power grid with
K = 1.4KSN and σ 2 = 0.01, where KSN is the coupling at which the synchronized
state emerges. Predictions from Eq. (5) are drawn with red lines.

or the sum of the node variances 〈δθT
δθ〉. We can write the total net-

work variance in a useful form as proportional to an effective noise
amplitude for small fluctuations, q,

〈δθT
δθ〉 =

σ 2

2
q, where q =

1

K

N
∑

α=2

u
T
αGGT

uα

λα

. (5)

The SF noise amplitude, q, gives us a simple multiplicative fac-
tor for how the feed-in noise is effectively amplified by the network
to produce its noise-induced variance. Equation (5) shows us that
SFs around the synchronized state depend crucially on the covari-
ance matrix of the noise, GGT, with larger variances produced when
the principal modes of the covariance align with the slowest modes
of the synchronized state. Next, we explore Eq. (5) further with
specific noise models.

A. Heterogeneous and uncorrelated noise

Let us begin with heterogeneous and uncorrelated noise on the
nodes, for which [GGT]ij = δij g2

i . First, we test the general Eq. (5) in
Fig. 1, where we plot the total network variance observed in stochas-
tic simulations of Eq. (1) vs the effective SF amplitude q for two
networks: (a) the IEEE-30 test grid and (b) the UK power grid.36

For noise intensities, we use a simple model with independent and
uniform distributions, g2

i ∼ 1 + h ∗ Ui(−0.5, 0.5), where h is a het-
erogeneity parameter and Ui(−0.5, 0.5) is the uniform distribution
for the ith oscillator over the interval [−0.5, 0.5]. Different symbols
in Fig. 1 correspond to different random samples from the Uis. For
a given sample, the heterogeneity parameter h is also varied while
keeping g2

i > 0 ∀i. In Fig. 1, we see that the SF predictions from
Eq. (5), shown with a red line, are in good agreement with simu-
lations and, in particular, confirm the linearity of the total network
variance with q for both networks.

We can gain further analytical insight into the effect of het-
erogeneity with uncorrelated noise by considering noise intensities
that are randomly determined and i.i.d., as in the example in Fig. 1.
In particular, let us assume that that the first and second moments

of the noise-intensity distribution are, respectively, g2
i = µ and g4

i

= s2 + µ2. In this case, one has for the average and variance of

Eq. (5),

µq =
µ

K

N
∑

α=2

1

λα

and

σ 2
q =

s2

K2

N
∑

α=2

N
∑

β=2

∑

k u2
α,ku

2
β ,k

λαλβ

.

(6)

First, note that in Eq. (6), the expectation of q is equivalent to
the standard homogeneous noise case where the intensities are iden-
tical to their means. In general, the result implies larger expected SFs
for weakly connected networks, which only depend on the sum of
the inverse stability eigenvalues. We can get a sense for the impor-
tance of noise heterogeneity by considering σ 2

q /µ2
q. First, near the

emergence of the synchronized state at the saddle-node bifurcation,
K & KSN, Eq. (6) is dominated by the slowest mode α = 2 (called the
Fiedler mode) with λ2 ≈ 0.16,17 In this case, σ 2

q /µ2
q ≈ (s2/µ2)

∑

i u4
2,i.

It is known that for typical saddle-node bifurcations, the Fiedler
mode effectively splits the oscillator network into two subgraphs
that lose synchrony at bifurcation.16,17 If we denote the sizes of the
two subgraphs W and N − W, we have u2,i ≈ −

√
(N − W)/WN if

i is in the smaller subgraph and u2,i ≈
√

W/(N − W)N otherwise;
note that the results are exact for so-called single-cut saddle node
bifurcations.17,27 If W � N, then σ 2

q /µ2
q ≈ (s2/µ2)/W. For example,

for the UK grid in Fig. 1(b), σ 2
q /µ2

q = (s2/µ2)/7.52, which is close

to the expected value with W = 7. We conclude that when the num-
ber of weakly connected oscillators (W) is small, noise heterogeneity
effects can be significant, even for large networks.

On the other hand, if the coupling is large K � KSN, cos(θ∗
i

− θ∗
j ) ' 1. In this case, the weighted network Laplacian, L̃, becomes

identical to the unweighted network Laplacian, L.35 To understand
Eq. (6) in the large coupling limit further, we consider special
networks with known eigenstructure.37,38 For instance, for com-
plete, star, and circle graphs, we have

∑

α λ−1
α ' 1, N, N2/12 and

∑

α,β

∑

k u2
α,k

u2
β ,k

λαλβ
' 1/N, N, and N3/144 , respectively, for large N.39

From this, we observe that dense networks tend to be insensitive
to noise heterogeneity as their variance in q goes to zero with N.
Intuitively, such networks have short and multiple paths among the
nodes that make them efficient in averaging-out local disorder. In
contrast, networks with few paths among nodes, including networks
with central hubs and networks with large average path lengths,
have variances in q that tend to grow with N and are, thus, poor at
averaging-out heterogeneity. Nevertheless, despite their differences,
all example networks have σ 2

q /µ2
q ' (s2/µ2)/N, implying that we

can expect noise heterogeneity effects to be small in relative terms
in the limit of large networks and coupling.

B. Edge-correlated noise

Next, we consider noise that is correlated/anti-correlated
through edges of the coupling network. We start with the case where
noise is perfectly anti-correlated for each edge. Anti-correlation
between pairs of connected nodes can emerge, for instance, if there
is additive noise in coupling K, since the sinusoidal interaction in
Eq. (1) is an odd function. Perfect anti-correlated edge noise can be
achieved by choosing G = B, where B is the signed incidence matrix
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FIG. 2. Network variance from correlated edge noise. (a) Normalized variance
vs network size for Watts–Strogatz (circles), Barabasi-Albert (squares), and
Erdős–Renyi (asterisks) networks for anti-correlated edge noise with K = 0.6
≈ 2.5KSN and σ 2 = 0.02. Predictions from Eq. (8) are drawn with a red line.
(b) Normalized variance vs coupling for a 20-node Watts–Strogatz network. Blue
circles (σ 2 = 10−3) and diamonds (σ 2 = 10−4) correspond to simulations of
Eq. (1) with correlated edge noise while red squares (σ 2 = 10−3) and triangles
(σ 2 = 10−4) correspond to anti-correlated edge noise. Predictions from Eq. (5)
are drawn with solid curves.

such that if the mth edge connects nodes i and j , i.e., Aij > 0, then
Bim = 1, Bjm = −1, and Bkm = 0 otherwise (where one has to choose
an orientation for each edge). With this definition, the noise covari-
ance matrix reads as GGT = BBT = L.38 As a consequence, the SF
amplitude is

q(−) =
1

K

N
∑

α=2

u
T
αLuα

λα

, (7)

where (−) signifies anti-correlated edge noise.
For further analytical perspective on Eq. (7), we once more con-

sider the large coupling limit where L̃ ' L, whereby Eq. (7) reduces
to

q(−) '
(N − 1)

K
. (8)

Interestingly, for anti-correlated noise on every edge, the total net-
work variance is predicted to depend on the network size but not the
topology when the coupling is large.

Example predictions for anti-correlated edge noise are demon-
strated in Fig. 2(a). In particular, we fix the coupling strength
to K ≈ 2.5KSN and vary the sizes of networks subjected to anti-
correlated noise. Three different classes of networks are plotted:
Watts–Strogatz with 〈k〉 = 4 and 10% random connections (cir-
cles), Barabasi-Albert with “new” nodes added with degree m = 4
(squares), and Erdős–Renyi with 〈k〉 = 4 (asterisks).38 Each random
network model produces very different topologies. Yet, as predicted
by Eq. (8), all network variances are proportional to the number of
nodes only.

The opposite case of perfectly correlated edge noise is slightly
more involved and can arise in the presence of small noisy
phase frustration, since the derivative of the sine interaction
is symmetric, e.g., sin(θ∗

j − θ∗
i + w(t)) ≈ sin(θ∗

j − θ∗
i ) + w(t) ∗ cos

(θ∗
j − θ∗

i ).40 For correlated edge noise, the feed-in matrix is given

by G = B̃, where B̃ is the unsigned incidence matrix such that if the
mth edge connects nodes i and j, i.e., Aij > 0, then B̃im = B̃jm = 1,

and B̃km = 0 otherwise. In this case,

q(+) = q(−) +
2

K

N
∑

α=2

u
T
αAuα

λα

, (9)

where (+) signifies correlated edge noise.
Again, assuming that the relative angles at the fixed point are

small, Eq. (9) implies that the difference between correlated and
anti-correlated edge noise depends on how the principal modes of
the network adjacency matrix overlap with the slowest modes of
the Laplacian. For an analytical perspective, we once more make
use of known spectra for model networks.37,38 For instance, for
complete, star, and circle graphs, we can compute [q(+) − q(−)]K
' −2, −4/N, and N2/3, respectively, for large N.39 From these spe-
cial cases, we make general observations that for networks with small
average path lengths, e.g., dense networks and networks with cen-
tral hubs, correlated and anti-correlated edge noise (or mixtures of
both) tend to produce nearly identical noise-induced variances with
q ' N/K. On the other hand, we expect variances to be much larger
for correlated vs anti-correlated noise, if the underlying network is
weakly connected and, in particular, has a large diameter.

Predictions for correlated and anti-correlated edge noise are
displayed in Fig. 2(b). We plot the normalized variance for cor-
related (top) and anti-correlated (bottom) edge noise for two
noise intensities as a function of the coupling strength for a
Watts–Strogatz network.41 We can see that the variance quickly
increases as we approach the bifurcation KSN ≈ 0.125. On the other
hand, as the coupling increases both approach the expected behav-
ior, q → constant/K for K � KSN. Note that the correlated series is
above the anti-correlated, which is consistent with our expectations
from Eq. (9), since the underlying network is sparse and without
high-degree hubs.

C. Collective-mode noise

Finally, before moving on to large fluctuations, we consider
noise that is correlated along the modes of the synchronized state,
i.e., Gim = G0,mum,i for m = 2, . . . , M, where M � N. We call this
case collective mode noise. From Eq. (5), the SF network amplitude
reads

q =
1

K

∑

m

G2
0,m

λm

. (10)

Because of its simple connection to the network modes, Eq. (10) is
easy to interpret. For instance, if all the modes have the same inten-
sity G0,m = G0, the lth mode contributes a fraction λ−1

l /
∑

m λ−1
m of

the variance. More generally, if the noise intensity is held constant,
I =

∑

m G2
0,m, we can see that the network variance is maximized

when G2
0,2 = I. Namely, the largest SFs occur when we “pump” all

the noise into the Fiedler mode.

III. LARGE FLUCTUATIONS

Next, we turn to the problem of large fluctuations (LFs) from
synchronized states and, in particular, fluctuations that drive oscil-
lator networks to unstable saddle points.14,16,25,42,43 Upon reaching a
saddle, the usual pattern for Kuramoto model networks is for some
number of connected oscillators to develop full-phase slips with
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respect to each other before returning to a synchronized state.16,25

For instance, in the simple case of tree networks, the two subgraphs
that would be disconnected by the removal of a given edge (the edge
associated with the saddle instability) slip.17,33,44

Generally for such LFs, the statistics are not Gaussian, which is
the case within the SF approximation. In particular, in the small-
noise limit, the probability distributions for LFs are effectively
exponential with exponents that are not simple quadratic forms
(as in the SF approximation), but more complex functions reflect-
ing the full nonlinear dynamics. The probability exponents for LFs
are called “actions,” since they are describable in terms of classi-
cal mechanics.14,15,42,43,45 In general, analytical solutions for actions
are unknown, and one must resort to solving a two-point boundary
value problem numerically in an augmented Hamiltonian system.46

However, this approach is numerically intensive and, therefore slow
and often fails to provide analytical insights for high-dimensional
networked systems.

Here, we develop an analytical approximation technique for
estimating large fluctuation rates for Eq. (1) based on mode projec-
tion. Our approach is to look for solutions of the dynamics Eq. (1)
where all of the oscillators move together according to θi(t) = θ∗

i

+ a(t)1θi ∀i, where 1θi ≡ θ s
i − θ∗

i , and where θ
s is the saddle fixed

point of Eq. (1). Typical of mode projections, we substitute this
ansatz into Eq. (1), multiply the ith equation by 1θi, sum over all
i, and solve for ȧ. The result is the following stochastic differential
equation for the projection amplitude a(t):

ȧ = F(a) +
∑

i 1θi

∑

m Gimξm(t)
∑

l 1θ 2
l

, where

F(a) =

∑

i 1θi

[

ωi + K
∑

j Aij sin
(

θ∗
j − θ∗

i + a(1θj − 1θi)
)

]

∑

l 1θ 2
l

.

(11)

Note that despite its seeming complexity, Eq. (11) has the simple
form of a one-dimensional, nonlinear system with additive noise.

Before continuing our analysis, let us point out two benefits
of the projection. First, we encode the exact fixed-points of the
network—the stable synchronized state and the saddle—into the
dynamics of a. Hence, Eq. (11) has conserved the exact boundary
conditions for LFs but in a lower-dimensional theory. Inciden-
tally, we call the approach the indicator mode approximation (IMA),
because a = 0 encodes the synchronized state, while a = 1 “indi-
cates” that an LF has occurred. Second, as we approach the saddle-
node bifurcation, |θ s

i − θ∗
i | � 1 ∀i, the IMA dynamics is expected to

be increasingly accurate, since the oscillators can be shown to follow
an effective one-dimensional dynamics where 1θ is proportional to
the Fiedler mode of the synchronized state.17,33

Before uncovering several other useful features of the IMA, we
point out that the goal in front of us is to construct the augmented
Hamiltonian system for describing LFs of the mode projection
amplitude a. To do so, we need to construct the Fokker–Planck
equation for the probability flux of a, which requires understand-
ing the noise term in Eq. (11). To make progress, note that we have
a linear summation of i.i.d Gaussian random variables. Hence, the
noise term on the right hand side of Eq. (11) will have a Gaussian
distribution with some mean and variance. Let us define the effective

noise η(t) ≡
∑

i 1θi

∑

m Gimξm(t)
/

∑

l 1θ 2
l . It is straightforward to

see that the mean of η is zero, since 〈ξm〉 = 0 ∀m. To calculate the
variance of η, we use two well-known properties of random vari-
ables: (1) the variance of the sum of random variables is the sum of
the variances. (2) The variance of a constant multiplied by a ran-
dom variable is the variance of the random variable multiplied by
the constant squared.47 As a consequence,

〈η(t)η(t′)〉 = σ 2
∑

m

Q2
m δ(t − t′), where

Qm =
∑

i Gim1θi
∑

l 1θ 2
l

. (12)

Given Eqs. (11) and (12), we can now write the Fokker–Planck
equation for the probability flux of a,

∂P

∂t
= −

∂

∂a

[

F(a)P
]

+
1

2

∂2

∂a2

[

σ 2
∑

m

Q2
m P

]

. (13)

Next, we look for solutions to Eq. (13) in the WKB form,
P ∼ exp[−2S(a, t)/σ 2], which is the expected form for describing
large deviations of a in the tail of the probability distribution.42,43,45,48,49

We note that the WKB approximation is generally valid in the limit
σ 2 � 1. If we plug the WKB ansatz into Eq. (13) and take the
limit σ 2 → 0, we convert the Fokker–Planck equation into a Hamil-
ton–Jacobi equation, ∂S/∂t + H = 0, atO(1/σ 2) with Hamiltonian,

H = F(a)
∂S

∂a
+

∑

m

Q2
m

(

∂S

∂a

)2

. (14)

Equation (14) is the standard form for the LF Hamiltonian of a
one-dimensional nonlinear process with additive Gaussian white
noise.42,43 Since we are looking for fluctuations from a stable syn-
chronized state, we want to solve for the stationary distribution
where S(a, t) (called the action) has no explicit time dependence,
∂S/∂t = 0. In this case, H = 0, and therefore,

∂S

∂a
=

dS

da
= −

F(a)
∑

m Q2
m

. (15)

Finally, integrating Eq. (15) from the synchronized state a = 0 to
the saddle a = 1, we derive the IMA action, which is an approxi-
mation for the probability-exponent for LFs to a saddle (denoted S,
henceforth, for brevity),

S =
∑

l 1θ 2
l

∑

m,i (Gmi1θi)
2

S0, where

S0 =
∑

i

1θi









−ωi + K
∑

j,
1θi 6=1θj

Aij

1θj − 1θi

·
(

cos
(

θ s
j − θ s

i

)

− cos
(

θ∗
j − θ∗

i

)









. (16)

We have written the action in a suggestive form in Eq. (16).
Recall that for Kuramoto model networks with i.i.d. additive noise
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on the nodes (where G is an NxN identity matrix), the LF paths
are identical to the time-reversed paths of the noise-free system
and have actions given by S0.16,26 Therefore, within the IMA, the
action from heterogeneous and spatially correlated noise re-scales
the action from the i.i.d limit by the inverse of an effective noise
amplitude, Q,

Q =
1θ

TGGT1θ

1θ
T1θ

. (17)

Consequently, the IMA produces the exact result for homogeneous
noise, which is true, not just near bifurcation as we expect, but in
general. We point out that this is interesting, since it is easy to check
that the time-reversed paths of the deterministic system do not sat-
isfy the constrained, mode assumptions of the IMA. Nevertheless,
the IMA produces the correct action. We further point out for com-
parison that, even in the case of homogeneous noise intensities on
the nodes for which the IMA gives the exact probability exponent to
reach a saddle in the small-noise limit, the SF (Gaussian) approxi-

mation is
∑

α
1
2
Kλα(1θ

T
uα)

2
. One can check that this SF result has

a significant fractional error of & 50%.
As previously mentioned, the probabilities for LFs described

by large-deviations theory generally take the form P ∼ exp[−S/D],
where D is an effective noise amplitude for the considered
process.42,43,48 In our case, we have D = σ 2Q/2. Note that similar to
the SF network amplitude, q, all of the feed-in noise dependence for
LFs is in Q. Namely, if we keep all parameters constant (the topology,
the coupling, the natural frequencies, and the input noise intensities)
while changing the noise feed-in matrix alone, changes in the prob-
abilities for LFs are contained within changes in Q. In particular, as
we increase Q, we increase the likelihood for LFs (within the IMA).

A. Noise model numerical comparisons

Similar to Sec. II, our approach for the remainder of this section
is to understand and test the predictions of Eq. (16) using the noise
models presented in Sec. II and then compare Q and q for each.
In order to test our IMA with simulations of Eq. (1), we use a
standard observable for LFs: the average waiting time, 〈T〉.14,43 In
general, LFs in the small-noise limit are expected to be Poisson pro-
cesses with exponentially distributed waiting times.14,43 Moreover,
the observation rate is expected to be proportional to the probability
or 〈T〉 = B ∗ exp[2S0/σ

2Q], where B is a slowly varying prefactor
function compared to exp[2S0/σ

2Q]. Thus, for large 〈T〉, we can
predict ln〈T〉 to within a constant,

ln〈T〉 ≈
2S0

σ 2Q
+ constant. (18)

To compare to Eq. (18), we measure the time it takes for a 2π phase-
difference to appear between connected oscillators in simulations
of Eq. (1), average the times over 200 stochastic realizations, and
then repeat for different G within the noise-model classes defined in
Sec. II. Then, we plot our results with an additive constant.

We start with the case where noise is uncorrelated and
heterogeneous on the nodes, [GGT]ij = δij g2

i . In this model,

FIG. 3. Natural logarithm of network slip times from uncorrelated and hetero-
geneous noise on the nodes. Slip times vs the inverse of the large fluctuation
amplitude for (a) the IEEE-30 test bus network with σ 2 = 0.1 and (b) the UK
power grid with σ 2 = 0.05. The noise distributions, coupling, and simulation
plot-labels for (a) and (b) follow the same convention as for Fig. 1. Slip times
vs the distance a targeted node, i0, must travel to a saddle for (c) the IEEE-30 test
bus network with K = 1.6KSN and σ 2 = 0.08 and (d) a 3-regular random network
with K = 1.5KSN , σ

2 = 0.07, and N = 100. For (c) and (d), the noise intensities
on the nodes are all equal, except for a single targeted node that has doubled
intensity. Simulation points are drawn with blue triangles. In all panels, predictions
from Eq. (18) are drawn with red lines.

Eq. (17) becomes

Q =
∑

l g
2
l 1θ 2

l
∑

i 1θ 2
i

. (19)

Following Fig. 1, we can plot simulated slip times using the same
networks and random noise intensities on the nodes as Fig. 1; results
are shown in Figs. 3(a) and 3(b) for the same two example networks.
First, we notice that we quantitatively capture the dependence of the
average slip times as we change the underlying noise distribution,
according to Eqs. (16), (18), and (19). Second, we notice the intuitive
hypothesis that the largest slip times should be produced by the noise
heterogeneity patterns with the smallest network variances does not
seem to hold. For instance, in the upper right corner of Fig. 3(b),
the three largest LF slip times are plotted with a solid-faced: (upside-
down) triangle, square, and circle. In contrast, the three smallest SF
variances in the lower left corner of Fig. 1(b) have different symbols
and hence have different noise intensities on the nodes. A simple
measure for the correspondence between variances and LF rates
is the Pearson correlation coefficient, R = cov(q, Q)

/

var(Q)var(q),
where cov(q, Q) is the covariance of q and Q, and var(q) and var(Q)

are the respective variances over the samples of GGT. Though simple
and linear, this choice is natural since q and Q are both ampli-
tudes for the linear operator GGT. For the data plotted in Figs. 1(a)
and 1(b) and Figs. 3(a) and 3(b), we have for the two example net-
works R = 0.83 and R = 0.84, respectively. Therefore, in the case
of random intensity distributions, we find a strong, but not perfect,
correlation between the total network variance and the rate of LFs.
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FIG. 4. Natural logarithm of network slip times from random mixtures of cor-
related and anti-correlated edge noise vs the inverse of the large fluctuation
amplitude for (a) a 20-node Watts–Strogatz network with K = 1.5KSN and
σ 2 = 0.02 and (b) a 100-node 3-regular network with K = 1.5KSN and σ 2

= 0.02. Simulation points are drawn with blue triangles while predictions from
Eq. (18) are drawn with red lines. The mixture of edge noise that is predicted to
have the minimum slip time is drawn with an asterick for both (a) and (b).

But, what about non-random intensities? In particular, Eq. (19)
implies that the largest response for LFs comes from pumping noise
into the nodes that must travel the farthest to the saddle. Namely,
if we fix the noise intensity, I =

∑

i g2
i , then we expect a maximum

rate for LFs when g2
l = I, where l = maxi{1θ 2

i }, i.e., not necessarily
when the Fiedler mode is targeted. We can test the model of node-
targeted noise by assuming that the noise-intensities on the nodes
are identical except for a single node, denoted i0, that has, e.g., dou-
ble the intensity. This case is plotted for two example networks50 in
Figs. 3(c) and 3(d). Though there is some spread around the simple
IMA prediction, the expected behavior is demonstrated: a decrease
in the average slip times with the saddle distance of the targeted
node. As with Figs. 3(a) and 3(b), we can repeat the Pearson compu-
tation comparing noise-induced SFs and LFs. Interestingly, we find
significantly lower degrees of correlation between the total network
variance and the rate of LFs with R = 0.41 and R = 0.26 for (c) and
(d), respectively.

Next, we consider edge-correlated noise. Similar to heteroge-
neous noise-intensities on the nodes, we focus on GGT that tend
to align with fluctuations to θ

s. As such, let us consider mixtures
of perfectly correlated and anti-correlated edge noise. Namely, we
assume that if the mth edge connects nodes i and j, then Gmi = 1
and Gmj = rij, where rij ∈ {−1, 1}. In this case, Eq. (17) becomes

Q =
∑

i ki1θ 2
i +

∑

i,j Aijrij1θi1θj
∑

l 1θ 2
l

, (20)

where ki is the degree of the ith node. Given Eq. (20), it is easy to
see that in order to increase the rates of LFs, we want the edge corre-
lations to align with the product of the displacements to the saddle
for connected nodes. In particular, in order to maximize the rates of
LFs,

r(max)
ij = sign(1θi1θj), ∀{i, j} with Aij = 1. (21)

Example slip times from correlated edge noise are plotted in
Fig. 4 for two networks, panels (a) and (b). For each point, we have
independently and randomly assigned a correlation (1 or −1) to
every edge in the network. Hence, different points are different ran-
dom sample realizations of the mixture correlated edge-noise model.

FIG. 5. Natural logarithm of network slip times from collective mode noise vs the
inverse of the large fluctuation amplitude for (a) the IEEE-30 test bus network
with K = 2KSN and σ 2 = 0.06 and (b) the UK power grid with K = 1.4KSN and
σ 2 = 0.02. Simulation points are drawn with blue triangles while predictions from
Eq. (18) are drawn with red lines. For each simulation point, the noise intensities
for each mode are drawn randomly.

As with the heterogeneous noise examples, we can see that the com-
bined Eqs. (16), (18), and (20) capture the quantitative behavior
of average slip times as the noise correlations are varied. More-
over, the predicted minimum slip times (having the maximum slip
rate), which are plotted with astericks in each panel, appear very
near the bottom of the sampled slip times, in agreement with the
IMA prediction Eq. (21). In order to compare SFs and LFs in this
edge-noise model, we can compute the Pearson correlations for the
example networks in Figs. 4(a) and 4(b), which are R = 0.21 and
R = 0.24, respectively. Therefore, we find that similar to targeted
node noise, we have a relatively low degree of correlation between
the noise-induced network variance and the rate of LFs when noise
is correlated along the edges of a network.

The final example that we consider is collective-mode noise. In
this model, the noise is introduced through a relatively small num-
ber of the network’s stable modes of the synchronized state, with
Gim = G0,mum,i as in Sec. II C. For comparisons to simulations, we
chose the five slowest modes of the IEEE network and the UK power
grid, since they produce the largest variances from Eq. (10). Exam-
ples are shown in Figs. 5(a) and 5(b). Each point represents the
average slip times from random intensities on the modes, which are
sampled from i.i.d uniform distributions, G0,m ∼ Um(−4, 4). Here,
we can see that the IMA predictions plotted in red capture the trend,
though the spread around our estimate predictions are appreciable
in this highly spatially correlated noise model. For the Pearson cor-
relation between q and Q, we find R = 0.63 and R = 0.69 for (a) and
(b), respectively, for the two example networks. Such values indicate
a moderate correlation between the total network variance and the
rate of LFs for collective-mode noise. In fact, the level of correlation
is similar to the model of uncorrelated and random noise intensities
on the nodes, though not as high.

IV. CONCLUSION

Noise is an inevitable component of the dynamics of com-
plex networks, which typically couple together many heterogeneous
dynamical systems. Important examples are oscillator networks,
which are used to model the synchronization of electric power net-
works, neuronal networks, Josephson junction arrays, and many

Chaos 33, 113129 (2023); doi: 10.1063/5.0163992 33, 113129-7

Published by AIP Publishing

 21 N
ovem

ber 2023 20:23:57

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

other physical and biological systems. Since the physical parameters
that govern the dynamics of such systems are typically heteroge-
neous and spatially embedded, and often not all of the interactions
between components can be fully modeled, we expect the noise on
oscillator networks to be both heterogeneous and spatially corre-
lated. If the noise is small, a network has small fluctuations on short
time scales around stable states, while on long times scales, noise
can create fluctuations to unstable saddle states and result in basin
escape.

In this work, we addressed both large and small fluctuations
from synchronized states in coupled phase oscillator networks and
showed that both can be quantified in terms of distinct effective
noise amplitudes for each regime. In the small fluctuation regime,
we found that noise heterogeneity tends to persist for weakly sta-
ble networks, networks with central hubs, and networks with large
diameters. On the other hand, for noise that is spatially correlated
along edges of the network, the network variance for large networks
tends to depend only on the number of nodes in the network as
the coupling strength is increased, except for networks with large
diameters and positive correlations. In the large fluctuation regime,
we found that noise maximizes the rate of large fluctuations when
it targets nodes that must travel the farthest to saddles and when
noise is correlated along edges of a network such that the correlation
between nodes is aligned with the product of their displacements to
a saddle. Comparing the two regimes we showed that the total net-
work variance and the rate of large fluctuations can be significantly
correlated in the case of randomly heterogeneous noise while only
weakly correlated for targeted and edge-correlated noise. Broadly,
our work demonstrates that both large and small fluctuations in
phase oscillator networks can and should be analyzed separately,
especially when the feed-in noise is heterogeneous and spatially
correlated. We expect that both the analytical tools and the noise
models developed here for phase oscillators can be extended to more
general oscillators with amplitude dependence and find useful appli-
cation in a wider range of noisy-network problems, especially when
a network produces a locally stable state that is known to coexist
with other states of instability.

Future work will consider extensions of the indicator mode
approximation for estimating large fluctuation rates to include more
network modes and increased numerical accuracy. In addition,
interesting avenues for broader application of the work presented
could entail, for example, analyzing large and small fluctuations of
noisy oscillator networks with only partial synchronization and in
more complex network dynamical systems including electric power
systems,4 swarming networks,51,52 and swarmalator systems.53,54

SUPPLEMENTARY MATERIAL

See the supplementary material for supporting calculations for
the noise-induced network variance in special model networks.
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